These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38466171)

  • 1. Deep eutectic solvent-based pressurized liquid extraction combined with dispersive liquid-liquid microextraction of organophosphorus pesticide residues in egg powder prior to high-performance liquid chromatography analysis.
    Zareasghari O; Javadi A; Afshar Mogaddam MR
    J Sep Sci; 2024 Mar; 47(5):e2300070. PubMed ID: 38466171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-phase solvent extraction system combined with deep eutectic solvent-based dispersive liquid-liquid microextraction for extraction of some organochlorine pesticides in cocoa samples prior to gas chromatography with electron capture detection.
    Mardani A; Afshar Mogaddam MR; Farajzadeh MA; Mohebbi A; Nemati M; Torbati M
    J Sep Sci; 2020 Sep; 43(18):3674-3682. PubMed ID: 32700804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples.
    Jouyban A; Farajzadeh MA; Afshar Mogaddam MR
    Talanta; 2020 Jan; 206():120169. PubMed ID: 31514834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of microwave-assisted solvent extraction and effervescence-assisted deep eutectic solvent-based in-syringe dispersive liquid-liquid microextraction and its application in the extraction of triazine pesticides from apple samples.
    Safaei S; Atazadeh R; Afshar Mogaddam MR
    J Sep Sci; 2022 Oct; 45(19):3735-3744. PubMed ID: 35932475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples.
    Seebunrueng K; Santaladchaiyakit Y; Srijaranai S
    Chemosphere; 2014 May; 103():51-8. PubMed ID: 24332733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of organic and deep eutectic solvents based dispersive liquid-liquid microextraction for the analysis of phytosterols in cow milk combined with high-performance liquid chromatography-ultraviolet detector.
    Homaie O; Afshar Mogaddam MR; Tamizi E; Nemati M
    J Sep Sci; 2021 Nov; 44(22):4167-4180. PubMed ID: 34558180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Countercurrent Salting-out Homogenous Liquid-Liquid Extraction and Dispersive Liquid-Liquid Microextraction Based on the Solidification of Floating Organic Drop Followed by High-Performance Liquid Chromatography for the Isolation and Preconcentration of Pesticides from Fruit Samples.
    Teymori Z; Sadeghi M; Fattahi N
    J AOAC Int; 2022 Apr; 105(3):802-811. PubMed ID: 34904642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS.
    Nemati M; Tuzen M; Farazajdeh MA; Kaya S; Afshar Mogaddam MR
    Anal Chim Acta; 2022 Mar; 1199():339570. PubMed ID: 35227380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of some organophosphorus pesticides in water and watermelon samples by microextraction prior to high-performance liquid chromatography.
    Wang C; Wu Q; Wu C; Wang Z
    J Sep Sci; 2011 Nov; 34(22):3231-9. PubMed ID: 22038851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of organophosphorus pesticides in environmental water samples by dispersive liquid-liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography.
    Wu C; Liu H; Liu W; Wu Q; Wang C; Wang Z
    Anal Bioanal Chem; 2010 Jul; 397(6):2543-9. PubMed ID: 20509022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.
    Chen J; Zhou G; Deng Y; Cheng H; Shen J; Gao Y; Peng G
    J Sep Sci; 2016 Jan; 39(2):272-8. PubMed ID: 26553707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples.
    Musarurwa H; Tavengwa NT
    Food Chem; 2021 Apr; 342():127943. PubMed ID: 33041169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of phosphocholine chloride-based three-component deep eutectic solvent: application in dispersive liquid-liquid microextraction for determination of organothiophosphate pesticides.
    Mokhtari N; Torbati M; Farajzadeh MA; Afshar Mogaddam MR
    J Sci Food Agric; 2020 Apr; 100(6):2364-2371. PubMed ID: 31853973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.
    Farajzadeh MA; Mohebbi A
    J Chromatogr A; 2018 Jan; 1532():10-19. PubMed ID: 29174132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a green high density deep eutectic solvent and its application in microextraction of seven widely used pesticides from honey.
    Farajzadeh MA; Abbaspour M; Kazemian R
    J Chromatogr A; 2019 Oct; 1603():51-60. PubMed ID: 31262512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of organophosphorous pesticides in the ppq range using a simple solid-phase extraction method combined with dispersive liquid-liquid microextraction.
    Alves AC; Gonçalves MM; Bernardo MM; Mendes BS
    J Sep Sci; 2011 Sep; 34(18):2475-81. PubMed ID: 21796792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of dispersive liquid-liquid microextraction and solid-phase microextraction: An efficient hyphenated sample preparation method.
    Jafari MT; Saraji M; Mossaddegh M
    J Chromatogr A; 2016 Sep; 1466():50-8. PubMed ID: 27623062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices.
    Sereshti H; Jamshidi F; Nouri N; Nodeh HR
    J Sci Food Agric; 2020 Apr; 100(6):2534-2543. PubMed ID: 31975389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.