These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38466440)

  • 1. Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions.
    Godoy MS; Verdú I; de Miguel SR; Jiménez JD; Prieto MA
    Appl Microbiol Biotechnol; 2024 Mar; 108(1):258. PubMed ID: 38466440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic pathways of carbon assimilation and polyhydroxyalkanoate production by Rhodospirillum rubrum in response to different atmospheric fermentation.
    Tang M; Zhen X; Zhao G; Wu S; Hua W; Qiang J; Yanling C; Wang W
    PLoS One; 2024; 19(7):e0306222. PubMed ID: 39046963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide-dependent growth of Rhodospirillum rubrum.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1995 Apr; 177(8):2241-4. PubMed ID: 7721719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.
    Revelles O; Beneroso D; Menéndez JA; Arenillas A; García JL; Prieto MA
    Microb Biotechnol; 2017 Nov; 10(6):1412-1417. PubMed ID: 27677746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.
    Karmann S; Follonier S; Egger D; Hebel D; Panke S; Zinn M
    Microb Biotechnol; 2017 Nov; 10(6):1365-1375. PubMed ID: 28585362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting hydrogen production in Rhodospirillum rubrum by syngas-driven photoheterotrophic adaptive evolution.
    Hernández-Herreros N; Rodríguez A; Galán B; Auxiliadora Prieto M
    Bioresour Technol; 2024 Aug; 406():130972. PubMed ID: 38876276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum.
    Revelles O; Tarazona N; García JL; Prieto MA
    Environ Microbiol; 2016 Feb; 18(2):708-20. PubMed ID: 26472698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Plasticity and Ethylmalonyl Coenzyme A Pathway during Acetate Assimilation in Rhodospirillum rubrum S1H under Photoheterotrophic Conditions.
    De Meur Q; Deutschbauer A; Koch M; Wattiez R; Leroy B
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of trickle-bed bioreactors for converting synthesis gas to methane.
    Kimmel DE; Klasson KT; Clausen EC; Gaddy JL
    Appl Biochem Biotechnol; 1991; 28-29():457-69. PubMed ID: 1929378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dark metabolism of acetate in Rhodospirillum rubrum cells, grown under photoheterotropic conditions].
    Berg IA; Krasil'nikova EN; Ivanovskiĭ RN
    Mikrobiologiia; 2000; 69(1):13-8. PubMed ID: 10808482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate fermentation in Rhodospirillum rubrum and after transfer from aerobic to anaerobic conditions in the dark.
    Schön G; Voelskow H
    Arch Microbiol; 1976 Feb; 107(1):87-92. PubMed ID: 3145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions.
    Voelskow H; Schön G
    Arch Microbiol; 1978 Nov; 119(2):129-33. PubMed ID: 103509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness.
    Gorrell TE; Uffen RL
    J Bacteriol; 1977 Aug; 131(2):533-43. PubMed ID: 18439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide.
    Godoy MS; de Miguel SR; Prieto MA
    Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate.
    Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA
    Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis.
    Cavazza C; Collin-Faure V; Pérard J; Diemer H; Cianférani S; Rabilloud T; Darrouzet E
    J Proteomics; 2022 Jan; 250():104389. PubMed ID: 34601154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling continuous culture of Rhodospirillum rubrum in photobioreactor under light limited conditions.
    Favier-Teodorescu L; Cornet JF; Dussap CG
    Biotechnol Lett; 2003 Feb; 25(4):359-64. PubMed ID: 12882553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A singular PpaA/AerR-like protein in
    Godoy MS; de Miguel SR; Prieto MA
    mSystems; 2023 Dec; 8(6):e0070223. PubMed ID: 38054698
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Steinbüchel A
    FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.