These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38466587)

  • 1. An Algorithm to Estimate the Power Spectral Density From Allan Deviation.
    De Marchi F; Plumaris MK; Burt EA; Iess L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Apr; 71(4):506-515. PubMed ID: 38466587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ThêoH and Allan deviation as power-law noise estimators.
    McGee JA; Howe DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):448-52. PubMed ID: 17328343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability variances: a filter approach.
    Makdissi A; Vernotte F; De Clercq E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1011-28. PubMed ID: 20442012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allan Variance Computed in Space Domain: Definition and Application to InSAR Data to Characterize Noise and Geophysical Signal.
    Cavalié O; Vernotte F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):590-610. PubMed ID: 26552083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of the Hadamard Variance: Probability Distributions and Confidence Intervals.
    Ashby N; Patla B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):636-45. PubMed ID: 26672035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability distributions and confidence intervals for simulated power law noise.
    Ashby N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):116-28. PubMed ID: 25585396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power laws from linear neuronal cable theory: power spectral densities of the soma potential, soma membrane current and single-neuron contribution to the EEG.
    Pettersen KH; Lindén H; Tetzlaff T; Einevoll GT
    PLoS Comput Biol; 2014 Nov; 10(11):e1003928. PubMed ID: 25393030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.
    Malkin Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):582-9. PubMed ID: 26540681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Algorithm for Online Stochastic Error Modeling of Inertial Sensors in Urban Cities.
    Zhao L; Zhao L
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.
    Sesia I; Cantoni E; Cernigliaro A; Signorile G; Fantino G; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):575-81. PubMed ID: 26540679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing Periodic Variations of Atomic Frequency Standards via Their Frequency Stability Estimates.
    Cheng W; Nie G; Zhu J
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic Allan variance II: a fast computational algorithm.
    Galleani L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):182-8. PubMed ID: 20040444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a trapped-ion atomic clock in space.
    Burt EA; Prestage JD; Tjoelker RL; Enzer DG; Kuang D; Murphy DW; Robison DE; Seubert JM; Wang RT; Ely TA
    Nature; 2021 Jul; 595(7865):43-47. PubMed ID: 34194022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Corrected Allan Variance: Stability Analysis of Frequency Measurements With Missing Data.
    Galleani L; Sesia I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Oct; 66(10):1667-1683. PubMed ID: 31283479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allan Deviation of Atomic Clock Frequency Corrections: A New Diagnostic Tool for Characterizing Clock Disturbances.
    Enzer DG; Murphy DW; Burt EA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2590-2601. PubMed ID: 33617452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Long-Term Stability of Precise Oscillators under Influence of Frequency Drift.
    Cheng W; Nie G
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Parabolic Variance (PVAR): A Wavelet Variance Based on the Least-Square Fit.
    Vernotte F; Lenczner M; Bourgeois PY; Rubiola E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):611-23. PubMed ID: 26571523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KLTS: A Rigorous Method to Compute the Confidence Intervals for the Three-Cornered Hat and for Groslambert Covariance.
    Lantz E; Calosso CE; Rubiola E; Giordano V; Fluhr C; Dubois B; Vernotte F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1942-1949. PubMed ID: 31380754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Frequency Stability Measurements Having Multiple Data Gaps.
    Howe DA; Schlossberger N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):468-472. PubMed ID: 34936554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian-Distributed Spread-Spectrum for Covert Communications.
    Shakeel I; Hilliard J; Zhang W; Rice M
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.