These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38466818)

  • 1. Electrochemical Doping Effect on the Conductivity of Melanin-Inspired Materials.
    Brizuela Guerra N; Morais Lima JV; Nozella NL; Boratto MH; Paulin JV; Graeff CFO
    ACS Appl Bio Mater; 2024 Apr; 7(4):2186-2196. PubMed ID: 38466818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Unprecedented High Electronic Conductivity in Mammalian Pigment Based Eumelanin Thin Films After Thermal Annealing in Vacuum.
    Migliaccio L; Manini P; Altamura D; Giannini C; Tassini P; Maglione MG; Minarini C; Pezzella A
    Front Chem; 2019; 7():162. PubMed ID: 30972328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Charge Transport of a Natural Eumelanin for Sustainable Technologies.
    Paulin JV; Bayram S; Graeff CFO; Bufon CCB
    ACS Appl Bio Mater; 2023 Sep; 6(9):3633-3637. PubMed ID: 37676251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bipolarons rule the short-range terahertz conductivity in electrochemically doped P3HT.
    Tsokkou D; Cavassin P; Rebetez G; Banerji N
    Mater Horiz; 2022 Jan; 9(1):482-491. PubMed ID: 34904620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eumelanin thin films: solution-processing, growth, and charge transport properties.
    Wünsche J; Cicoira F; Graeff CFO; Santato C
    J Mater Chem B; 2013 Aug; 1(31):3836-3842. PubMed ID: 32261137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding Light on the Free Radical Nature of Sulfonated Melanins.
    Paulin JV; Batagin-Neto A; Meredith P; Graeff CFO; Mostert AB
    J Phys Chem B; 2020 Nov; 124(46):10365-10373. PubMed ID: 33153262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial water morphology in hydrated melanin.
    Martinez-Gonzalez JA; Cavaye H; McGettrick JD; Meredith P; Motovilov KA; Mostert AB
    Soft Matter; 2021 Sep; 17(34):7940-7952. PubMed ID: 34378618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications.
    Youn YH; Pradhan S; da Silva LP; Kwon IK; Kundu SC; Reis RL; Yadavalli VK; Correlo VM
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2466-2474. PubMed ID: 33851822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy Water as a Probe of the Free Radical Nature and Electrical Conductivity of Melanin.
    Rienecker SB; Mostert AB; Schenk G; Hanson GR; Meredith P
    J Phys Chem B; 2015 Dec; 119(48):14994-5000. PubMed ID: 26580677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High conductivity Sepia melanin ink films for environmentally benign printed electronics.
    Camus A; Reali M; Rozel M; Zhuldybina M; Soavi F; Santato C
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2200058119. PubMed ID: 35914170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic understanding of monovalent cation transport in eumelanin pigments.
    Tian Z; Hwang W; Kim YJ
    J Mater Chem B; 2019 Nov; 7(41):6355-6361. PubMed ID: 31465076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaseous adsorption in melanins: hydrophilic biomacromolecules with high electrical conductivities.
    Mostert AB; Davy KJ; Ruggles JL; Powell BJ; Gentle IR; Meredith P
    Langmuir; 2010 Jan; 26(1):412-6. PubMed ID: 20038178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Eumelanin and Its Derivatives as Multifunctional Materials for Bioinspired Applications: A Review.
    Xie W; Pakdel E; Liang Y; Kim YJ; Liu D; Sun L; Wang X
    Biomacromolecules; 2019 Dec; 20(12):4312-4331. PubMed ID: 31696698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly transparent sustainable biogel electrolyte based on cellulose acetate for application in electrochemical devices.
    Balboni RDC; Cholant CM; Lemos RMJ; Rodrigues LS; Carreno NLV; Santos MJL; Avellaneda CAO; Andreazza R
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130757. PubMed ID: 38462107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.
    Kim YJ; Wu W; Chun SE; Whitacre JF; Bettinger CJ
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20912-7. PubMed ID: 24324163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanin-based electronics: From proton conductors to photovoltaics and beyond.
    Vahidzadeh E; Kalra AP; Shankar K
    Biosens Bioelectron; 2018 Dec; 122():127-139. PubMed ID: 30245325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eumelanin Precursor 2-Carboxy-5,6-Dihydroxyindole (DHICA) as Doping Factor in Ternary (PEDOT:PSS/Eumelanin) Thin Films for Conductivity Enhancement.
    Migliaccio L; Gesuele F; Manini P; Maglione MG; Tassini P; Pezzella A
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration-controlled X-band EPR spectroscopy: a tool for unravelling the complexities of the solid-state free radical in eumelanin.
    Mostert AB; Hanson GR; Sarna T; Gentle IR; Powell BJ; Meredith P
    J Phys Chem B; 2013 May; 117(17):4965-72. PubMed ID: 23600769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Transport in the Biopigment Sepia Melanin.
    Reali M; Gouda A; Bellemare J; Ménard D; Nunzi JM; Soavi F; Santato C
    ACS Appl Bio Mater; 2020 Aug; 3(8):5244-5252. PubMed ID: 35021699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural biopolymers as proton conductors in bioelectronics.
    Jia M; Kim J; Nguyen T; Duong T; Rolandi M
    Biopolymers; 2021 Jul; 112(7):e23433. PubMed ID: 34022064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.