These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38467057)

  • 21. Fabrication of Flexible Polymer Molds for Polymer Microstructuring by Roll-to-Roll Hot Embossing.
    Kodihalli Shivaprakash N; Ferraguto T; Panwar A; Banerjee SS; Barry CF; Mead J
    ACS Omega; 2019 Jul; 4(7):12480-12488. PubMed ID: 31460367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers.
    Duan Y; Ding Y; Xu Z; Huang Y; Yin Z
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Replication of microchannel structures in WC-Co feedstock using elastomeric replica moulds by hot embossing process.
    Sahli M; Gelin JC; Barrière T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():252-66. PubMed ID: 26117760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of double-side ultrasonic embossing for fabrication of microstructures on thermoplastic polymer substrates.
    Luo Y; Yan X; Qi N; Wang X; Wang L
    PLoS One; 2013; 8(4):e61647. PubMed ID: 23630605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Microscale 3D Printing Based on the Electric-Field-Driven Jet.
    Zhang G; Lan H; Qian L; Zhao J; Wang F
    3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitigation of PWR fuel assembly vibrations using bio-inspired nozzles.
    Gad-El-Hak I; Mureithi N; Karazis K; Painter B
    Sci Rep; 2023 Nov; 13(1):20128. PubMed ID: 37978306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile Fabrication of Flexible Polymeric Membranes with Micro and Nano Apertures over Large Areas.
    Li K; Hernández-Castro JA; Morton K; Veres T
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels.
    Esch MB; Kapur S; Irizarry G; Genova V
    Lab Chip; 2003 May; 3(2):121-7. PubMed ID: 15100793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology.
    Xie D; Chang X; Shu X; Wang Y; Ding H; Liu Y
    Opt Express; 2015 Feb; 23(4):5154-66. PubMed ID: 25836549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Study of Drop-on-Demand Coaxial Electrohydrodynamic Jet and Printing Microdroplets.
    Abbas Z; Wang D; Lu L; Li Y; Pu C; Chen X; Xu P; Liang S; Kong L; Tang B
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions.
    Ye S; Williams NX; Franklin A
    J Electron Mater; 2022 Apr; 51(4):1583-1590. PubMed ID: 35991773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A systemic approach toward optimization of the hot embossing of poly-L-lactic acid for biomedical applications.
    Belligundu S; Shiakolas PS; Pandey A; Aswath PB
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):469-77. PubMed ID: 18076089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of high-resolution micro/nano dot array by electrohydrodynamic jet printing with enhanced uniformity.
    Jin Y; Zhao Z; Chen J; Chen W; Wang G; Yin Z
    Sci Rep; 2024 Mar; 14(1):6932. PubMed ID: 38521866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of polydimethylsiloxane nanofluidic chips under AFM tip-based nanomilling process.
    Wang J; Yan Y; Geng Y; Gan Y; Fang Z
    Nanoscale Res Lett; 2019 Apr; 14(1):136. PubMed ID: 30997583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro/nano replication and 3D assembling techniques for scaffold fabrication.
    Lima MJ; Correlo VM; Reis RL
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():615-21. PubMed ID: 25063161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips.
    Qin Y; Kreutz JE; Schneider T; Yen GS; Shah ES; Wu L; Chiu DT
    Lab Chip; 2022 Nov; 22(23):4729-4734. PubMed ID: 36367074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.