These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38467061)

  • 41. Adsorption Behavior of Ni-Doped ZnO Monolayer upon SF
    Liu M
    ACS Omega; 2020 Sep; 5(37):24118-24124. PubMed ID: 32984734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Charge doping and electric field tunable ferromagnetism and Curie temperature of the MnS
    Xie J; Wu D; Liao Y; Cao X; Zhou S
    Phys Chem Chem Phys; 2023 Dec; 26(1):267-277. PubMed ID: 38059372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Room-Temperature Ferromagnetism in Cu/Co Co-Doped ZnO Nanoparticles Prepared by the Co-Precipitation Method: For Spintronics Applications.
    Kanwal S; Khan MT; Mehboob N; Amami M; Zaman A
    ACS Omega; 2022 Sep; 7(36):32184-32193. PubMed ID: 36119992
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First principles studies of GeTe based dilute magnetic semiconductors.
    Fukushima T; Shinya H; Fujii H; Sato K; Katayama-Yoshida H; Dederichs PH
    J Phys Condens Matter; 2015 Jan; 27(1):015501. PubMed ID: 25427963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering the magnetic properties of PtSe
    Kar M; Sarkar R; Pal S; Sarkar P
    J Phys Condens Matter; 2019 Apr; 31(14):145502. PubMed ID: 30650400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO.
    Chen R; Luo F; Liu Y; Song Y; Dong Y; Wu S; Cao J; Yang F; N'Diaye A; Shafer P; Liu Y; Lou S; Huang J; Chen X; Fang Z; Wang Q; Jin D; Cheng R; Yuan H; Birgeneau RJ; Yao J
    Nat Commun; 2021 Jun; 12(1):3952. PubMed ID: 34172740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mn-X (X = F, Cl, Br, I) Co-Doped GeSe Monolayers: Stabilities and Electronic, Spintronic and Optical Properties.
    He W; Zhang X; Gong D; Nie Y; Xiang G
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrinsic Polarization-Induced Enhanced Ferromagnetism and Self-Doped p-n Junctions in CrBr
    Yang M; Shu H; Tang P; Liang P; Cao D; Chen X
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8764-8773. PubMed ID: 33555173
    [TBL] [Abstract][Full Text] [Related]  

  • 49. First-principles computational exploration of ferromagnetism in monolayer GaS via substitutional doping.
    Khan R; Rahman AU; Zhang Q; Kratzer P; Ramay SM
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34034249
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vanadium-Doped Molybdenum Diselenide Atomic Layers with Room-Temperature Ferromagnetism.
    Deng J; Zhou Z; Chen J; Cheng Z; Liu J; Wang Z
    Chemphyschem; 2022 Aug; 23(16):e202200162. PubMed ID: 35593048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of room-temperature ferromagnetism in a two-dimensional direct band gap semiconductor.
    Chen S; Wu F; Li Q; Sun H; Ding J; Huang C; Kan E
    Nanoscale; 2020 Aug; 12(29):15670-15676. PubMed ID: 32677637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Room temperature d (0) ferromagnetism in hole doped Y2O3: widening the choice of host to tailor DMS.
    Chakraborty B; Ramaniah LM
    J Phys Condens Matter; 2016 Aug; 28(33):336001. PubMed ID: 27351301
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The half-metallicity and the spin filtering, NDR and spin Seebeck effects in 2D Ag-doped SnSe
    Wu X; Xiong L; Feng Y; Wang C; Gao G
    J Chem Phys; 2019 Feb; 150(6):064701. PubMed ID: 30769985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cobalt-substituted ZnS QDs: a diluted magnetic semiconductor and efficient photocatalyst.
    Sonkar R; Mondal NJ; Thakur S; Saikia E; Ghosh MP; Chowdhury D
    Nanoscale Adv; 2023 Dec; 5(24):7042-7056. PubMed ID: 38059034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method.
    Raja K; Ramesh PS; Geetha D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():19-24. PubMed ID: 24177864
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic, magnetic and spectroscopic properties of doped Mn
    Mal P; Bera G; Rambabu P; Turpu GR; Chakraborty B; Ramaniah LM; Singh RP; Sen P; Das P
    J Phys Condens Matter; 2017 Feb; 29(7):075901. PubMed ID: 28032611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles.
    Sharma PK; Dutta RK; Pandey AC
    J Colloid Interface Sci; 2010 May; 345(2):149-53. PubMed ID: 20149385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The electronic structure and optical properties of Mn and B, C, N co-doped MoS2 monolayers.
    Xu WB; Huang BJ; Li P; Li F; Zhang CW; Wang PJ
    Nanoscale Res Lett; 2014; 9(1):554. PubMed ID: 25317103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Room temperature ferromagnetism and photoluminescence in Cu-doped ZnO nanocrystals.
    Kong L; Yu B; Xu X; Pan J; Su Y; Hu J
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6012-5. PubMed ID: 25936047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures.
    Bhardwaj R; Bharti A; Singh JP; Chae KH; Goyal N
    Nanoscale Adv; 2020 Oct; 2(10):4450-4463. PubMed ID: 36132885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.