These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38467896)

  • 21. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators.
    Song Y; Hu Y; Zhu X; Yang K; Lončar M
    Light Sci Appl; 2024 Sep; 13(1):225. PubMed ID: 39223111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chip-scale high-performance photonic microwave oscillator.
    He Y; Cheng L; Wang H; Zhang Y; Meade R; Vahala K; Zhang M; Li J
    Sci Adv; 2024 Aug; 10(33):eado9570. PubMed ID: 39141728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs.
    Stone JR; Briles TC; Drake TE; Spencer DT; Carlson DR; Diddams SA; Papp SB
    Phys Rev Lett; 2018 Aug; 121(6):063902. PubMed ID: 30141662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2020 Aug; 28(17):25400-25409. PubMed ID: 32907062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz.
    Brothers LR; Lee D; Wong NC
    Opt Lett; 1994 Feb; 19(4):245-7. PubMed ID: 19829605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis.
    Zhang W; Kittlaus E; Savchenkov A; Iltchenko V; Yi L; Papp SB; Matsko A
    Commun Phys; 2024; 7(1):177. PubMed ID: 38845615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.
    Kervella G; Van Dijk F; Pillet G; Lamponi M; Chtioui M; Morvan L; Alouini M
    Opt Lett; 2015 Aug; 40(15):3655-8. PubMed ID: 26258381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronization of nonsolitonic Kerr combs.
    Kim BY; Jang JK; Okawachi Y; Ji X; Lipson M; Gaeta AL
    Sci Adv; 2021 Oct; 7(43):eabi4362. PubMed ID: 34669470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.
    Brasch V; Geiselmann M; Herr T; Lihachev G; Pfeiffer MH; Gorodetsky ML; Kippenberg TJ
    Science; 2016 Jan; 351(6271):357-60. PubMed ID: 26721682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator.
    Zhang M; Buscaino B; Wang C; Shams-Ansari A; Reimer C; Zhu R; Kahn JM; Lončar M
    Nature; 2019 Apr; 568(7752):373-377. PubMed ID: 30858615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microresonator-based solitons for massively parallel coherent optical communications.
    Marin-Palomo P; Kemal JN; Karpov M; Kordts A; Pfeifle J; Pfeiffer MHP; Trocha P; Wolf S; Brasch V; Anderson MH; Rosenberger R; Vijayan K; Freude W; Kippenberg TJ; Koos C
    Nature; 2017 Jun; 546(7657):274-279. PubMed ID: 28593968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated turnkey soliton microcombs.
    Shen B; Chang L; Liu J; Wang H; Yang QF; Xiang C; Wang RN; He J; Liu T; Xie W; Guo J; Kinghorn D; Wu L; Ji QX; Kippenberg TJ; Vahala K; Bowers JE
    Nature; 2020 Jun; 582(7812):365-369. PubMed ID: 32555486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monolithic piezoelectric control of soliton microcombs.
    Liu J; Tian H; Lucas E; Raja AS; Lihachev G; Wang RN; He J; Liu T; Anderson MH; Weng W; Bhave SA; Kippenberg TJ
    Nature; 2020 Jul; 583(7816):385-390. PubMed ID: 32669694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable, coherent optical comb source via on-chip bidirectional coupling.
    McCarthy J; O'Sullivan D; Shayesteh M; Dernaika M; Peters FH; Kelleher B
    Opt Lett; 2023 Aug; 48(15):4137-4140. PubMed ID: 37527137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplification and phase noise transfer of a Kerr microresonator soliton comb for low phase noise THz generation with a high signal-to-noise ratio.
    Kuse N; Minoshima K
    Opt Express; 2022 Jan; 30(1):318-325. PubMed ID: 35201210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-dense optical data transmission over standard fibre with a single chip source.
    Corcoran B; Tan M; Xu X; Boes A; Wu J; Nguyen TG; Chu ST; Little BE; Morandotti R; Mitchell A; Moss DJ
    Nat Commun; 2020 May; 11(1):2568. PubMed ID: 32444605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures.
    Moille G; Lu X; Rao A; Li Q; Westly DA; Ranzani L; Papp SB; Soltani M; Srinivasan K
    Phys Rev Appl; 2019; 12(3):. PubMed ID: 33033742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the phase noise of a microresonator soliton comb.
    Nishimoto K; Minoshima K; Yasui T; Kuse N
    Opt Express; 2020 Jun; 28(13):19295-19303. PubMed ID: 32672209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photonic chip-based soliton frequency combs covering the biological imaging window.
    Karpov M; Pfeiffer MHP; Liu J; Lukashchuk A; Kippenberg TJ
    Nat Commun; 2018 Mar; 9(1):1146. PubMed ID: 29559634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs.
    Saleh K; Chembo YK
    Opt Express; 2016 Oct; 24(22):25043-25056. PubMed ID: 27828444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.