These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38467982)

  • 41. Induced Pluripotent Stem Cell-Derived T Cells for Cancer Immunotherapy.
    Patel SJ; Yamauchi T; Ito F
    Surg Oncol Clin N Am; 2019 Jul; 28(3):489-504. PubMed ID: 31079802
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D-organoid culture supports differentiation of human CAR
    Wang Z; McWilliams-Koeppen HP; Reza H; Ostberg JR; Chen W; Wang X; Huynh C; Vyas V; Chang WC; Starr R; Wagner JR; Aguilar B; Yang X; Wu X; Wang J; Chen W; Koelker-Wolfe E; Seet CS; Montel-Hagen A; Crooks GM; Forman SJ; Brown CE
    Cell Stem Cell; 2022 Apr; 29(4):515-527.e8. PubMed ID: 35278370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An optimized protocol for the generation of HBV viral antigen-specific T lymphocytes from pluripotent stem cells.
    Haque M; Xiong X; Lei F; Das JK; Song J
    STAR Protoc; 2021 Mar; 2(1):100264. PubMed ID: 33490980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of highly proliferative, rejuvenated cytotoxic T cell clones through pluripotency reprogramming for adoptive immunotherapy.
    Kawai Y; Kawana-Tachikawa A; Kitayama S; Ueda T; Miki S; Watanabe A; Kaneko S
    Mol Ther; 2021 Oct; 29(10):3027-3041. PubMed ID: 34023508
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies.
    Ye B; Stary CM; Gao Q; Wang Q; Zeng Z; Jian Z; Gu L; Xiong X
    J Immunol Res; 2017; 2017():5210459. PubMed ID: 28116322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
    Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M
    Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human iPSC Generation from Antigen-Specific T Cells.
    Nishimura T; Murmann Y; Nakauchi H
    Methods Mol Biol; 2019; 2048():53-57. PubMed ID: 31396928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. iPSC-Derived Natural Killer Cells for Cancer Immunotherapy.
    Karagiannis P; Kim SI
    Mol Cells; 2021 Aug; 44(8):541-548. PubMed ID: 34373366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rise of iPSCs as a cell source for adoptive immunotherapy.
    Minagawa A; Kaneko S
    Hum Cell; 2014 Apr; 27(2):47-50. PubMed ID: 24510519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Directed differentiation of induced pluripotent stem cells towards T lymphocytes.
    Lei F; Haque R; Xiong X; Song J
    J Vis Exp; 2012 May; (63):e3986. PubMed ID: 22617911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.
    Stauss HJ; Thomas S; Cesco-Gaspere M; Hart DP; Xue SA; Holler A; King J; Wright G; Perro M; Pospori C; Morris E
    Blood Cells Mol Dis; 2008; 40(1):113-6. PubMed ID: 17855129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells.
    Deng X; Zhou J; Cao Y
    Chin Med J (Engl); 2023 Jan; 136(2):127-137. PubMed ID: 36806264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an induced pluripotent stem cell-specific microRNA assay for detection of residual undifferentiated cells in natural killer cell therapy products.
    Chung L; Cogburn LA; Sui L; Dashnau JL
    Cytotherapy; 2022 Jul; 24(7):733-741. PubMed ID: 35461759
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [iPSC-derived rejuvenated T-cell therapy for Epstein-Barr virus-associated lymphomas].
    Ando M; Nakauchi H; Komatsu N
    Rinsho Ketsueki; 2018; 59(7):932-938. PubMed ID: 30078805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of Tumor Antigen-Specific Cytotoxic T Lymphocytes from Pluripotent Stem Cells.
    Chen X; Lei F; Wang L; Xiong X; Song J
    Methods Mol Biol; 2019; 1884():43-55. PubMed ID: 30465194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fit-For-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice With NK Cell Immunity.
    Flahou C; Morishima T; Takizawa H; Sugimoto N
    Front Immunol; 2021; 12():662360. PubMed ID: 33897711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells.
    Haque M; Song J; Fino K; Sandhu P; Wang Y; Ni B; Fang D; Song J
    Cell Transplant; 2016; 25(5):811-27. PubMed ID: 26777320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered T cells from induced pluripotent stem cells: from research towards clinical implementation.
    Netsrithong R; Garcia-Perez L; Themeli M
    Front Immunol; 2023; 14():1325209. PubMed ID: 38283344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation.
    Weber G; Karbach J; Kuçi S; Kreyenberg H; Willasch A; Koscielniak E; Tonn T; Klingebiel T; Wels WS; Jäger E; Bader P
    Leukemia; 2009 Sep; 23(9):1634-42. PubMed ID: 19357702
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics.
    Mehra V; Chhetri JB; Ali S; Roddie C
    Biology (Basel); 2023 Nov; 12(11):. PubMed ID: 37998018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.