BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38467998)

  • 1. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline.
    Chen J; Yang Z; Li W; Yang Y; Zhu F; Huo Z; Zhou Q
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25273-25286. PubMed ID: 38467998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica enhanced activation and stability of Fe/Mn decorated sludge biochar composite for tetracycline degradation.
    Wu Q; Dong C; Chen M; Zhang Y; Cai M; Chen Y; Jin M; Wei Z
    Chemosphere; 2023 Jul; 328():138614. PubMed ID: 37023899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [MIL-88A@MIP Activated Persulfate for Targeted Degradation of Dibutyl Phthalate].
    Wang JM; Guan ZY; Wan JQ; Wang Y; Ma YW; Yan ZC; Zhang GH
    Huan Jing Ke Xue; 2017 Dec; 38(12):5124-5131. PubMed ID: 29964572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light enhanced persulfate activation for degradation of tetracycline via boosting adsorption of persulfate by ligand-deficient MIL-101(Fe) icosahedron.
    Cheng G; Yuan C; Ruan W; Ma B; Zhang X; Yuan X; Li Z; Wang D; Teng F
    Chemosphere; 2023 Mar; 317():137857. PubMed ID: 36642131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous Cu-doped FeOOH composite in aqueous solution.
    Xu J; Zhang X; Sun C; Wan J; He H; Wang F; Dai Y; Yang S; Lin Y; Zhan X
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2820-2834. PubMed ID: 30488247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient activation of persulfate by Ti
    Wang Q; Zhu F; Cheng H; Komarneni S; Ma J
    Chemosphere; 2023 Jul; 328():138546. PubMed ID: 37019395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation.
    Yu J; Cao J; Yang Z; Xiong W; Xu Z; Song P; Jia M; Sun S; Zhang Y; Zhu J
    J Colloid Interface Sci; 2020 Nov; 580():470-479. PubMed ID: 32711198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIL-101(Fe)/WS
    Zhou Z; Cheng H; Komarneni S; Ma J
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122393-122404. PubMed ID: 37968488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation.
    Zhang Y; Zhou J; Chen J; Feng X; Cai W
    J Hazard Mater; 2020 Jun; 392():122315. PubMed ID: 32097853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: Catalytic performance and mechanism.
    Li X; Liao F; Ye L; Yeh L
    J Hazard Mater; 2020 Nov; 398():122938. PubMed ID: 32512451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone-modified metal-organic frameworks MIL-101(Fe) as heterogeneous catalysts of persulfate activation for degradation of aqueous organic pollutants.
    Guo H; Guo W; Liu Y; Ren X
    Water Sci Technol; 2019 Jun; 79(12):2357-2365. PubMed ID: 31411590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Redox Cycle of Rod-Shaped MIL-88A/SnFe
    Abd El-Monaem EM; Al Harby N; Batouti ME; Eltaweil AS
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient Fenton and enzyme-mimetic activities of NH
    He J; Zhang Y; Zhang X; Huang Y
    Sci Rep; 2018 Mar; 8(1):5159. PubMed ID: 29581533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The obvious advantage of amino-functionalized metal-organic frameworks: As a persulfate activator for bisphenol F degradation.
    Liu Z; Su R; Sun X; Zhou W; Gao B; Yue Q; Li Q
    Sci Total Environ; 2020 Nov; 741():140464. PubMed ID: 32886982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal from water by metal-organic framework MIL-88A microrods.
    Wu H; Ma MD; Gai WZ; Yang H; Zhou JG; Cheng Z; Xu P; Deng ZY
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27196-27202. PubMed ID: 30027376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A(Fe) decorated on cotton fibers.
    Pang D; Wang CC; Wang P; Liu W; Fu H; Zhao C
    Chemosphere; 2020 Sep; 254():126829. PubMed ID: 32348928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-alginate-laden MXene and MOF systems and their composite hydrogel beads for batch and fixed-bed adsorption of naproxen with electrochemical regeneration.
    Ghani AA; Devarayapalli KC; Kim B; Lim Y; Kim G; Jang J; Lee DS
    Carbohydr Polym; 2023 Oct; 318():121098. PubMed ID: 37479431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ibuprofen degradation by a synergism of facet-controlled MIL-88B(Fe) and persulfate under simulated visible light.
    Liu N; Wu J; Fei F; Lei J; Shi W; Quan G; Zeng S; Zhang X; Tang L
    J Colloid Interface Sci; 2022 Apr; 612():1-12. PubMed ID: 34974253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic MoS
    Zhang L; Zhang Q; Chen T; Wang C; Xiao C; Guo J; Pang X; Liu S
    Water Sci Technol; 2024 Apr; 89(7):1860-1878. PubMed ID: 38619908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation.
    He Y; Dong W; Li X; Wang D; Yang Q; Deng P; Huang J
    J Colloid Interface Sci; 2020 Aug; 574():364-376. PubMed ID: 32339819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.