BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38467999)

  • 1. Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint.
    Qi Q; Wang Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25114-25128. PubMed ID: 38467999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-analysis of engineered nanoparticles dynamic aggregation in freshwater-like systems using machine learning techniques.
    Yalezo N; Musee N
    J Environ Manage; 2023 Jul; 337():117739. PubMed ID: 36934506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity prediction of nanoparticles using machine learning approaches.
    Ahmadi M; Ayyoubzadeh SM; Ghorbani-Bidkorpeh F
    Toxicology; 2024 Jan; 501():153697. PubMed ID: 38056590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies.
    Solano R; Patiño-Ruiz D; Tejeda-Benitez L; Herrera A
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):16962-16981. PubMed ID: 33638785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs.
    Li X; Li L; Tang L; Mei J; Fu J
    Sci Total Environ; 2024 Apr; 921():170746. PubMed ID: 38342466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting nanotoxicity by an integrated machine learning and metabolomics approach.
    Peng T; Wei C; Yu F; Xu J; Zhou Q; Shi T; Hu X
    Environ Pollut; 2020 Dec; 267():115434. PubMed ID: 32841907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of acute chemical toxicity of biocides in marine crustaceans using machine learning.
    Krishnan R; Howard IS; Comber S; Jha AN
    Sci Total Environ; 2023 Aug; 887():164072. PubMed ID: 37268134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of trends for fine-scale spread of
    Gong YF; Luo ZW; Feng JX; Xue JB; Guo ZY; Jin YJ; Yu Q; Xia S; Lü S; Xu J; Li SZ
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2022 Jun; 34(3):241-251. PubMed ID: 35896487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From lab to ecosystem: Understanding the ecological footprints of engineered nanoparticles.
    Gomte SS; Jadhav PV; Jothi Prasath V R N; Agnihotri TG; Jain A
    J Environ Sci Health C Toxicol Carcinog; 2024; 42(1):33-73. PubMed ID: 38063467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive pollen-based biome modeling using machine learning.
    Sobol MK; Finkelstein SA
    PLoS One; 2018; 13(8):e0202214. PubMed ID: 30138366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Sci Technol; 2022 Nov; 56(22):15238-15250. PubMed ID: 36196869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of engineered nanoparticles using aquatic plants: Mechanisms and practical feasibility.
    Ebrahimbabaie P; Meeinkuirt W; Pichtel J
    J Environ Sci (China); 2020 Jul; 93():151-163. PubMed ID: 32446451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster model incorporating heterogeneous dose distribution of partial parotid irradiation for radiotherapy induced xerostomia prediction with machine learning methods.
    Chao M; El Naqa I; Bakst RL; Lo YC; Peñagarícano JA
    Acta Oncol; 2022 Jul; 61(7):842-848. PubMed ID: 35527717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

  • 19. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
    Van Koetsem F; Xiao Y; Luo Z; Du Laing G
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5277-87. PubMed ID: 26564182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.