These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38467999)

  • 41. Proteomic evaluation of nanotoxicity in aquatic organisms: A review.
    Tubatsi G; Kebaabetswe LP; Musee N
    Proteomics; 2022 Nov; 22(21):e2200008. PubMed ID: 36107811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Release, transport and toxicity of engineered nanoparticles.
    Soni D; Naoghare PK; Saravanadevi S; Pandey RA
    Rev Environ Contam Toxicol; 2015; 234():1-47. PubMed ID: 25385512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of postoperative complications after oesophagectomy using machine-learning methods.
    Jung JO; Pisula JI; Bozek K; Popp F; Fuchs HF; Schröder W; Bruns CJ; Schmidt T
    Br J Surg; 2023 Sep; 110(10):1361-1366. PubMed ID: 37343072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust machine learning algorithms for predicting coastal water quality index.
    Uddin MG; Nash S; Mahammad Diganta MT; Rahman A; Olbert AI
    J Environ Manage; 2022 Nov; 321():115923. PubMed ID: 35988401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells.
    Roy J; Roy K
    Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.
    Zeng Q; Liu Y; Zhao H; Sun M; Li X
    Environ Pollut; 2017 Apr; 223():676-684. PubMed ID: 28196722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss.
    Troiano G; Nibali L; Petsos H; Eickholz P; Saleh MHA; Santamaria P; Jian J; Shi S; Meng H; Zhurakivska K; Wang HL; Ravidà A
    J Clin Periodontol; 2023 Mar; 50(3):348-357. PubMed ID: 36305042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early Diabetes Prediction: A Comparative Study Using Machine Learning Techniques.
    Poly TN; Islam MM; Li YJ
    Stud Health Technol Inform; 2022 Jun; 295():409-413. PubMed ID: 35773898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture.
    Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A
    BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
    Cupi D; Hartmann NB; Baun A
    Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mechanisms and environmental implications of engineered nanoparticles dispersion.
    Zhang D; Qiu J; Shi L; Liu Y; Pan B; Xing B
    Sci Total Environ; 2020 Jun; 722():137781. PubMed ID: 32199363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical features identification for chemical chronic toxicity based on mechanistic forecast models.
    Wang X; Li F; Chen J; Teng Y; Ji C; Wu H
    Environ Pollut; 2022 Aug; 307():119584. PubMed ID: 35688391
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Fan D; Yang H; Li F; Sun L; Di P; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2018 Mar; 7(2):211-220. PubMed ID: 30090576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of Machine Learning Models for Prediction of Smoking Cessation Outcome.
    Lai CC; Huang WH; Chang BC; Hwang LC
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33807561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges.
    Bathi JR; Moazeni F; Upadhyayula VKK; Chowdhury I; Palchoudhury S; Potts GE; Gadhamshetty V
    Sci Total Environ; 2021 Nov; 793():148560. PubMed ID: 34328971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches.
    Wang J; Yang B; An Y; Marquez-Lago T; Leier A; Wilksch J; Hong Q; Zhang Y; Hayashida M; Akutsu T; Webb GI; Strugnell RA; Song J; Lithgow T
    Brief Bioinform; 2019 May; 20(3):931-951. PubMed ID: 29186295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.
    Van Koetsem F; Van Havere L; Du Laing G
    J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.