These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38468044)

  • 1. Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms.
    Závodszky G; Gyürki D; Károlyi G; Szikora I; Paál G
    Adv Neurobiol; 2024; 36():397-412. PubMed ID: 38468044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging fractal patterns in a real 3D cerebral aneurysm.
    Závodszky G; Károlyi G; Paál G
    J Theor Biol; 2015 Mar; 368():95-101. PubMed ID: 25591886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow?
    Schelin AB; Károlyi G; de Moura AP; Booth N; Grebogi C
    Comput Biol Med; 2012 Mar; 42(3):276-81. PubMed ID: 21803349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal structures in stenoses and aneurysms in blood vessels.
    Schelin AB; Károlyi G; de Moura AP; Booth NA; Grebogi C
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1933):5605-17. PubMed ID: 21078637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic advection in blood flow.
    Schelin AB; Károlyi G; de Moura AP; Booth NA; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016213. PubMed ID: 19658798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chaos and fractals and their applications in electrocardial signal research].
    Jiao Q; Guo Y; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):676-80. PubMed ID: 19634696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of chaotic behavior in an experimental loudspeaker.
    Reiss JD; Djurek I; Petosic A; Djurek D
    J Acoust Soc Am; 2008 Oct; 124(4):2031-41. PubMed ID: 19062843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universality in active chaos.
    Tél T; Nishikawa T; Motter AE; Grebogi C; Toroczkai Z
    Chaos; 2004 Mar; 14(1):72-8. PubMed ID: 15003046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic models of cerebral aneurysms for assessment of effect of vessel geometry on risk of rupture.
    Avolio A; Farnoush A; Morgan M; Qian Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2351-3. PubMed ID: 19965184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal and noisy CBV dynamics in humans: influence of age and gender.
    Eke A; Hermán P; Hajnal M
    J Cereb Blood Flow Metab; 2006 Jul; 26(7):891-8. PubMed ID: 16292253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic Principles of Hemodynamics and Cerebral Aneurysms.
    Munarriz PM; Gómez PA; Paredes I; Castaño-Leon AM; Cepeda S; Lagares A
    World Neurosurg; 2016 Apr; 88():311-319. PubMed ID: 26805691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos and fractals in dynamical models of transport and reaction.
    Gaspard P; Claus I
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):303-15. PubMed ID: 16210183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in Modeling Hemodynamics in Cerebral Aneurysms Related to Arteriovenous Malformations.
    Boster KAS; Shidhore TC; Cohen-Gadol AA; Christov IC; Rayz VL
    Cardiovasc Eng Technol; 2022 Oct; 13(5):673-684. PubMed ID: 35106721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.
    Castro MA; Putman CM; Cebral JR
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1703-9. PubMed ID: 16971618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic Differences in Intracranial Aneurysms before and after Rupture.
    Cornelissen BM; Schneiders JJ; Potters WV; van den Berg R; Velthuis BK; Rinkel GJ; Slump CH; VanBavel E; Majoie CB; Marquering HA
    AJNR Am J Neuroradiol; 2015 Oct; 36(10):1927-33. PubMed ID: 26089313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamics and bleb formation in intracranial aneurysms.
    Cebral JR; Sheridan M; Putman CM
    AJNR Am J Neuroradiol; 2010 Feb; 31(2):304-10. PubMed ID: 19797790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems.
    Korolj A; Wu HT; Radisic M
    Biomaterials; 2019 Oct; 219():119363. PubMed ID: 31376747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study.
    Qiu T; Jin G; Xing H; Lu H
    Neurol Sci; 2017 Jun; 38(6):1009-1018. PubMed ID: 28285454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.