BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38468088)

  • 1. Multiplex Marker-Less Genome Integration in Pichia pastoris Using CRISPR/Cas9.
    Gao J; Cheng J; Lian J
    Methods Mol Biol; 2024; 2760():157-167. PubMed ID: 38468088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into
    Gao J; Xu J; Zuo Y; Ye C; Jiang L; Feng L; Huang L; Xu Z; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):623-633. PubMed ID: 35080853
    [No Abstract]   [Full Text] [Related]  

  • 3. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris.
    Liu Q; Shi X; Song L; Liu H; Zhou X; Wang Q; Zhang Y; Cai M
    Microb Cell Fact; 2019 Aug; 18(1):144. PubMed ID: 31434578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Homologous Recombination Efficiency in
    Gao J; Ye C; Cheng J; Jiang L; Yuan X; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):547-553. PubMed ID: 35061355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted editing of transcriptional activator MXR1 on the Pichia pastoris genome using CRISPR/Cas9 technology.
    Hou C; Yang Y; Xing Y; Zhan C; Liu G; Liu X; Liu C; Zhan J; Xu D; Bai Z
    Yeast; 2020 Apr; 37(4):305-312. PubMed ID: 32050051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for
    Zhang X; Gu S; Zheng X; Peng S; Li Y; Lin Y; Liang S
    ACS Synth Biol; 2021 Nov; 10(11):2927-2937. PubMed ID: 34644057
    [No Abstract]   [Full Text] [Related]  

  • 11. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Review of the Potential of Pichia pastoris (Komagataella phaffii) as an Alternative Host for Biologics Production.
    Vijayakumar VE; Venkataraman K
    Mol Biotechnol; 2024 Jul; 66(7):1621-1639. PubMed ID: 37400712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris.
    Prielhofer R; Barrero JJ; Steuer S; Gassler T; Zahrl R; Baumann K; Sauer M; Mattanovich D; Gasser B; Marx H
    BMC Syst Biol; 2017 Dec; 11(1):123. PubMed ID: 29221460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Mediated Homology-Directed Genome Editing in Pichia pastoris.
    Gassler T; Heistinger L; Mattanovich D; Gasser B; Prielhofer R
    Methods Mol Biol; 2019; 1923():211-225. PubMed ID: 30737742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.
    Chung BK; Selvarasu S; Andrea C; Ryu J; Lee H; Ahn J; Lee H; Lee DY
    Microb Cell Fact; 2010 Jul; 9():50. PubMed ID: 20594333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of proteins in Pichia pastoris.
    Mastropietro G; Aw R; Polizzi KM
    Methods Enzymol; 2021; 660():53-80. PubMed ID: 34742398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris.
    Guo F; Qiao Y; Xin F; Zhang W; Jiang M
    Trends Biotechnol; 2023 Aug; 41(8):1066-1079. PubMed ID: 36967258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.