BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 38468278)

  • 1. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences.
    Scarano C; Veneruso I; De Simone RR; Di Bonito G; Secondino A; D'Argenio V
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38785975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide methylation patterns from canine nanopore assemblies.
    Schall PZ; Winkler PA; Petersen-Jones SM; Yuzbasiyan-Gurkan V; Kidd JM
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37681359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-m6A calling and integrated long-read epigenetic and genetic analysis with fibertools.
    Jha A; Bohaczuk SC; Mao Y; Ranchalis J; Mallory BJ; Min AT; Hamm MO; Swanson E; Dubocanin D; Finkbeiner C; Li T; Whittington D; Noble WS; Stergachis AB; Vollger MR
    Genome Res; 2024 Jun; ():. PubMed ID: 38849157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m6A detection efficiency and calling bias correcting pipeline.
    Dennis AF; Xu Z; Clark DJ
    Nucleic Acids Res; 2024 May; 52(9):e45. PubMed ID: 38634798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed highly-accurate DNA sequencing of closely-related HIV-1 variants using continuous long reads from single molecule, real-time sequencing.
    Dilernia DA; Chien JT; Monaco DC; Brown MP; Ende Z; Deymier MJ; Yue L; Paxinos EE; Allen S; Tirado-Ramos A; Hunter E
    Nucleic Acids Res; 2015 Nov; 43(20):e129. PubMed ID: 26101252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct transposition of native DNA for sensitive multimodal single-molecule sequencing.
    Nanda AS; Wu K; Irkliyenko I; Woo B; Ostrowski MS; Clugston AS; Sayles LC; Xu L; Satpathy AT; Nguyen HG; Alejandro Sweet-Cordero E; Goodarzi H; Kasinathan S; Ramani V
    Nat Genet; 2024 May; ():. PubMed ID: 38724748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ntsm: an alignment-free, ultra-low-coverage, sequencing technology agnostic, intraspecies sample comparison tool for sample swap detection.
    Chu J; Rong J; Feng X; Li H
    Gigascience; 2024 Jan; 13():. PubMed ID: 38832466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of nanopore sequencing signal data with tunable parameters.
    Gamaarachchi H; Ferguson JM; Samarakoon H; Liyanage K; Deveson IW
    Genome Res; 2024 Jun; ():. PubMed ID: 38692839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopore Current Events Magnifier (nanoCEM): a novel tool for visualizing current events at modification sites of nanopore sequencing.
    Guo Z; Ni Y; Tan L; Shao Y; Ye L; Chen S; Li R
    NAR Genom Bioinform; 2024 Jun; 6(2):lqae052. PubMed ID: 38774513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-read sequencing provides insights into genetic influence.
    Trivett C
    Nat Rev Cardiol; 2024 Jun; 21(6):359. PubMed ID: 38499869
    [No Abstract]   [Full Text] [Related]  

  • 11. Correction to: Genome-wide methylation patterns from canine nanopore assemblies.
    G3 (Bethesda); 2024 May; ():. PubMed ID: 38775733
    [No Abstract]   [Full Text] [Related]  

  • 12. A multiomic characterization of the leukemia cell line REH using short- and long-read sequencing.
    Lysenkova Wiklander M; Arvidsson G; Bunikis I; Lundmark A; Raine A; Marincevic-Zuniga Y; Gezelius H; Bremer A; Feuk L; Ameur A; Nordlund J
    Life Sci Alliance; 2024 Aug; 7(8):. PubMed ID: 38777370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation.
    Liu Y; Rosikiewicz W; Pan Z; Jillette N; Wang P; Taghbalout A; Foox J; Mason C; Carroll M; Cheng A; Li S
    Genome Biol; 2021 Oct; 22(1):295. PubMed ID: 34663425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing methylation detection for primary human tissue using Nanopore sequencing.
    Genner R; Akeson S; Meredith M; Jerez PA; Malik L; Baker B; Miano-Burkhardt A; ; Paten B; Billingsley KJ; Blauwendraat C; Jain M
    bioRxiv; 2024 Mar; ():. PubMed ID: 38464144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Methylation Profiling Using Long-Read Single Molecule Real-Time Bisulfite Sequencing (SMRT-BS).
    Yang Y; Scott SA
    Methods Mol Biol; 2017; 1654():125-134. PubMed ID: 28986786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology.
    Tedersoo L; Albertsen M; Anslan S; Callahan B
    Appl Environ Microbiol; 2021 Aug; 87(17):e0062621. PubMed ID: 34132589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-read sequencing in deciphering human genetics to a greater depth.
    Midha MK; Wu M; Chiu KP
    Hum Genet; 2019 Dec; 138(11-12):1201-1215. PubMed ID: 31538236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes.
    Sigurpalsdottir BD; Stefansson OA; Holley G; Beyter D; Zink F; Hardarson MÞ; Sverrisson SÞ; Kristinsdottir N; Magnusdottir DN; Magnusson OÞ; Gudbjartsson DF; Halldorsson BV; Stefansson K
    Genome Biol; 2024 Mar; 25(1):69. PubMed ID: 38468278
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.