BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38468344)

  • 61. Development of computational models using omics data for the identification of effective cancer metabolic biomarkers.
    Lee SM; Kim HU
    Mol Omics; 2021 Dec; 17(6):881-893. PubMed ID: 34608924
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlling the confounding effect of metabolic gene expression to identify actual metabolite targets in microsatellite instability cancers.
    Li CI; Yeh YM; Tsai YS; Huang TH; Shen MR; Lin PC
    Hum Genomics; 2023 Mar; 17(1):18. PubMed ID: 36879264
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT.
    Agren R; Bordel S; Mardinoglu A; Pornputtapong N; Nookaew I; Nielsen J
    PLoS Comput Biol; 2012; 8(5):e1002518. PubMed ID: 22615553
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Association between bivariate expression of key oncogenes and metabolic phenotypes of patients with prostate cancer.
    Khodayari Moez E; Pyne S; Dinu I
    Comput Biol Med; 2018 Dec; 103():55-63. PubMed ID: 30340213
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 68. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The panoramic picture of pepsinogen gene family with pan-cancer.
    Shen S; Li H; Liu J; Sun L; Yuan Y
    Cancer Med; 2020 Dec; 9(23):9064-9080. PubMed ID: 33067881
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite-gene associations in plants.
    Simpson JP; Wunderlich C; Li X; Svedin E; Dilkes B; Chapple C
    Plant Cell; 2021 May; 33(3):492-510. PubMed ID: 33955498
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.
    García-Cañaveras JC; López S; Castell JV; Donato MT; Lahoz A
    Anal Bioanal Chem; 2016 Feb; 408(4):1217-30. PubMed ID: 26769129
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparing somatic mutation-callers: beyond Venn diagrams.
    Kim SY; Speed TP
    BMC Bioinformatics; 2013 Jun; 14():189. PubMed ID: 23758877
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A multimodal atlas of tumour metabolism reveals the architecture of gene-metabolite covariation.
    Benedetti E; Liu EM; Tang C; Kuo F; Buyukozkan M; Park T; Park J; Correa F; Hakimi AA; Intlekofer AM; Krumsiek J; Reznik E
    Nat Metab; 2023 Jun; 5(6):1029-1044. PubMed ID: 37337120
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Metabolic Footprinting of Microbial Systems Based on Comprehensive In Silico Predictions of MS/MS Relevant Data.
    Reiter A; Asgari J; Wiechert W; Oldiges M
    Metabolites; 2022 Mar; 12(3):. PubMed ID: 35323700
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Common and mutation specific phenotypes of KRAS and BRAF mutations in colorectal cancer cells revealed by integrative -omics analysis.
    Kundu S; Ali MA; Handin N; Conway LP; Rendo V; Artursson P; He L; Globisch D; Sjöblom T
    J Exp Clin Cancer Res; 2021 Jul; 40(1):225. PubMed ID: 34233735
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Deep Pathway Analysis V2.0: A Pathway Analysis Framework Incorporating Multi-Dimensional Omics Data.
    Zhao Y; Shin DG
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):373-385. PubMed ID: 31603796
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MiMeNet: Exploring microbiome-metabolome relationships using neural networks.
    Reiman D; Layden BT; Dai Y
    PLoS Comput Biol; 2021 May; 17(5):e1009021. PubMed ID: 33999922
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples.
    Gorlov IP; Pikielny CW; Frost HR; Her SC; Cole MD; Strohbehn SD; Wallace-Bradley D; Kimmel M; Gorlova OY; Amos CI
    BMC Bioinformatics; 2018 Nov; 19(1):430. PubMed ID: 30453881
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Potential Transcriptomic and Metabolomic Mechanisms of ATO and ATRA in Treatment of FLT3-ITD Acute Myeloid Leukemia.
    Peng CJ; Fan Z; Luo JS; Wang LN; Li Y; Liang C; Zhang XL; Luo XQ; Huang LB; Tang YL
    Technol Cancer Res Treat; 2024; 23():15330338231223080. PubMed ID: 38179723
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models.
    Liu P; Hua Y; Zhang W; Xie T; Zhuang Y; Xia J; Noorman H
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2553-2565. PubMed ID: 34459987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.