These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38468757)

  • 1. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive
    Sychla A; Feltman NR; Hutchison WD; Smanski MJ
    Front Insect Sci; 2022; 2():1063789. PubMed ID: 38468757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive
    Sychla A; Feltman NR; Hutchison WD; Smanski MJ
    Front Insect Sci; 2023; 3():1360167. PubMed ID: 38469520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based split homing gene drive targeting
    Yadav AK; Butler C; Yamamoto A; Patil AA; Lloyd AL; Scott MJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(25):e2301525120. PubMed ID: 37307469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting thresholds for population replacement gene drives.
    Janzen A; Pothula R; Sychla A; Feltman NR; Smanski MJ
    BMC Biol; 2024 Feb; 22(1):40. PubMed ID: 38369493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression.
    Upadhyay A; Feltman NR; Sychla A; Janzen A; Das SR; Maselko M; Smanski M
    Elife; 2022 Feb; 11():. PubMed ID: 35108195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterile insect technique and
    Nikolouli K; Colinet H; Renault D; Enriquez T; Mouton L; Gibert P; Sassu F; Cáceres C; Stauffer C; Pereira R; Bourtzis K
    J Pest Sci (2004); 2018; 91(2):489-503. PubMed ID: 29568248
    [No Abstract]   [Full Text] [Related]  

  • 7. Combining sterile and incompatible insect techniques for the population suppression of
    Nikolouli K; Sassù F; Mouton L; Stauffer C; Bourtzis K
    J Pest Sci (2004); 2020; 93(2):647-661. PubMed ID: 32132880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the global distribution of invasive pest
    Nair RR; Peterson AT
    PeerJ; 2023; 11():e15222. PubMed ID: 37123003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conditional female lethal system for genetic suppression of the global fruit crop pest Drosophila suzukii.
    Li F; Yamamoto A; Belikoff EJ; Berger A; Griffith EH; Scott MJ
    Pest Manag Sci; 2021 Nov; 77(11):4915-4922. PubMed ID: 34169646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of the European earwig (Forficula auricularia) as a biocontrol agent of the soft and stone fruit pest Drosophila suzukii.
    Bourne A; Fountain MT; Wijnen H; Shaw B
    Pest Manag Sci; 2019 Dec; 75(12):3340-3345. PubMed ID: 31066201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propensity for resistance development in the invasive berry pest, spotted-wing drosophila (Drosophila suzukii), under laboratory selection.
    Deans C; Hutchison WD
    Pest Manag Sci; 2022 Dec; 78(12):5203-5212. PubMed ID: 36054242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii.
    Ahmed HMM; Heese F; Wimmer EA
    BMC Genet; 2020 Dec; 21(Suppl 2):139. PubMed ID: 33339511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Field-Derived Drosophila suzukii (Diptera: Drosophilidae) Resistance to Pyrethroids in California Berry Production.
    Ganjisaffar F; Demkovich MR; Chiu JC; Zalom FG
    J Econ Entomol; 2022 Oct; 115(5):1676-1684. PubMed ID: 35957586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic border plants in early season berries do not increase parasitism of spotted wing drosophila, Drosophila suzukii.
    Tsuruda M; Girod P; Clausen M; Carrillo J
    Pest Manag Sci; 2023 Jan; 79(1):134-139. PubMed ID: 36114592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field Suppression of Spotted Wing Drosophila (SWD) (
    Homem RA; Mateos-Fierro Z; Jones R; Gilbert D; Mckemey AR; Slade G; Fountain MT
    Insects; 2022 Mar; 13(4):. PubMed ID: 35447770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HUGE pipeline to measure temporal genetic variation in
    Feltman NR; Burkness EC; Ebbenga DN; Hutchison WD; Smanski MJ
    Front Insect Sci; 2022; 2():981974. PubMed ID: 38468784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in the Chemical Ecology of the Spotted Wing Drosophila (Drosophila suzukii) and its Applications.
    Cloonan KR; Abraham J; Angeli S; Syed Z; Rodriguez-Saona C
    J Chem Ecol; 2018 Oct; 44(10):922-939. PubMed ID: 30054769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii).
    Enriquez T; Ruel D; Charrier M; Colinet H
    Insect Sci; 2020 Apr; 27(2):317-335. PubMed ID: 30381878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of the seasonal abundance of the invasive pest Drosophila suzukii reveal temperature extremes determine population activity potential.
    Ørsted M; Lye J; Umina PA; Maino JL
    Pest Manag Sci; 2021 Oct; 77(10):4555-4563. PubMed ID: 34085385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of native biocontrol agents, with parasitoids of the invasive pest
    Kruitwagen A; Beukeboom LW; Wertheim B
    Evol Appl; 2018 Oct; 11(9):1473-1497. PubMed ID: 30344621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.