These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38468815)

  • 1. A method for synchronized use of EEG and eye tracking in fully immersive VR.
    Larsen OFP; Tresselt WG; Lorenz EA; Holt T; Sandstrak G; Hansen TI; Su X; Holt A
    Front Hum Neurosci; 2024; 18():1347974. PubMed ID: 38468815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSVEP BCI and Eye Tracking Use by Individuals With Late-Stage ALS and Visual Impairments.
    Peters B; Bedrick S; Dudy S; Eddy B; Higger M; Kinsella M; McLaughlin D; Memmott T; Oken B; Quivira F; Spaulding S; Erdogmus D; Fried-Oken M
    Front Hum Neurosci; 2020; 14():595890. PubMed ID: 33328941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robotic arm control system with simultaneous and sequential modes combining eye-tracking with steady-state visual evoked potential in virtual reality environment.
    Guo R; Lin Y; Luo X; Gao X; Zhang S
    Front Neurorobot; 2023; 17():1146415. PubMed ID: 37051328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3D paradigm synchronous motion for SSVEP-based hybrid BCI-VR system.
    Niu L; Bin J; Wang JKS; Zhan G; Jia J; Zhang L; Gan Z; Kang X
    Med Biol Eng Comput; 2023 Sep; 61(9):2481-2495. PubMed ID: 37191865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment.
    Tan Y; Lin Y; Zang B; Gao X; Yong Y; Yang J; Li S
    J Neurosci Methods; 2022 Feb; 368():109442. PubMed ID: 34915046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VR-enabled portable brain-computer interfaces via wireless soft bioelectronics.
    Mahmood M; Kim N; Mahmood M; Kim H; Kim H; Rodeheaver N; Sang M; Yu KJ; Yeo WH
    Biosens Bioelectron; 2022 Aug; 210():114333. PubMed ID: 35525171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of SSVEP-BCI Virtual Reality Stereo Stimulation Parameters Based on Knowledge Graph.
    Zhu S; Yang J; Ding P; Wang F; Gong A; Fu Y
    Brain Sci; 2023 Apr; 13(5):. PubMed ID: 37239182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Affective Interaction System using Virtual Reality and Brain-Computer Interface.
    Chin ZY; Zhang Z; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6183-6186. PubMed ID: 34892528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
    Yang D; Nguyen TH; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immersive Virtual Reality and Ocular Tracking for Brain Mapping During Awake Surgery: Prospective Evaluation Study.
    Casanova M; Clavreul A; Soulard G; Delion M; Aubin G; Ter Minassian A; Seguier R; Menei P
    J Med Internet Res; 2021 Mar; 23(3):e24373. PubMed ID: 33759794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.
    Lee JH; Lim JH; Hwang HJ; Im CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2240-2. PubMed ID: 24110169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based hybrid QWERTY mental speller with high information transfer rate.
    Katyal EA; Singla R
    Med Biol Eng Comput; 2021 Mar; 59(3):633-661. PubMed ID: 33594631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.
    Slobounov SM; Ray W; Johnson B; Slobounov E; Newell KM
    Int J Psychophysiol; 2015 Mar; 95(3):254-60. PubMed ID: 25448267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Wearable Headset with Steady State Visually Evoked Potential-Based Brain Computer Interface.
    Lin BS; Lin BS; Yen TH; Hsu CC; Wang YC
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31658616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.