These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 38469536)
21. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. Ganbaatar O; Cao B; Zhang Y; Bao D; Bao W; Wuriyanghan H BMC Biotechnol; 2017 Feb; 17(1):9. PubMed ID: 28183289 [TBL] [Abstract][Full Text] [Related]
22. RNAi technology: a new platform for crop pest control. Mamta B; Rajam MV Physiol Mol Biol Plants; 2017 Jul; 23(3):487-501. PubMed ID: 28878489 [TBL] [Abstract][Full Text] [Related]
23. Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection. Howard JD; Beghyn M; Dewulf N; De Vos Y; Philips A; Portwood D; Kilby PM; Oliver D; Maddelein W; Brown S; Dickman MJ J Biol Chem; 2022 Sep; 298(9):102311. PubMed ID: 35921898 [TBL] [Abstract][Full Text] [Related]
24. Implementing the sterile insect technique with RNA interference - a review. Darrington M; Dalmay T; Morrison NI; Chapman T Entomol Exp Appl; 2017 Sep; 164(3):155-175. PubMed ID: 29200471 [TBL] [Abstract][Full Text] [Related]
25. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077 [TBL] [Abstract][Full Text] [Related]
27. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942 [TBL] [Abstract][Full Text] [Related]
28. Disruption of transmission of plant pathogens in the insect order Hemiptera using recent advances in RNA interference biotechnology. Niebres C; Alviar KB Arch Insect Biochem Physiol; 2023 Aug; 113(4):e22023. PubMed ID: 37221967 [TBL] [Abstract][Full Text] [Related]
29. RNAi-mediated plant protection against aphids. Yu XD; Liu ZC; Huang SL; Chen ZQ; Sun YW; Duan PF; Ma YZ; Xia LQ Pest Manag Sci; 2016 Jun; 72(6):1090-8. PubMed ID: 26888776 [TBL] [Abstract][Full Text] [Related]
30. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Niu J; Shen G; Christiaens O; Smagghe G; He L; Wang J Pest Manag Sci; 2018 Dec; 74(12):2680-2687. PubMed ID: 29749092 [TBL] [Abstract][Full Text] [Related]
31. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Luo Y; Chen Q; Luan J; Chung SH; Van Eck J; Turgeon R; Douglas AE Insect Biochem Mol Biol; 2017 Sep; 88():21-29. PubMed ID: 28736300 [TBL] [Abstract][Full Text] [Related]
32. Enhancing RNAi by using concatemerized double-stranded RNA. Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906 [TBL] [Abstract][Full Text] [Related]
33. The role of polymers in enabling RNAi-based technology for sustainable pest management. Quilez-Molina AI; Niño Sanchez J; Merino D Nat Commun; 2024 Oct; 15(1):9158. PubMed ID: 39443470 [TBL] [Abstract][Full Text] [Related]
34. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
35. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi. Cagliari D; Dias NP; Galdeano DM; Dos Santos EÁ; Smagghe G; Zotti MJ Front Plant Sci; 2019; 10():1319. PubMed ID: 31708946 [TBL] [Abstract][Full Text] [Related]
36. Molecular mechanisms influencing efficiency of RNA interference in insects. Cooper AM; Silver K; Zhang J; Park Y; Zhu KY Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761 [TBL] [Abstract][Full Text] [Related]
37. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Singewar K; Fladung M Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792 [TBL] [Abstract][Full Text] [Related]
38. Current scenario of RNAi-based hemipteran control. Jain RG; Robinson KE; Asgari S; Mitter N Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867 [TBL] [Abstract][Full Text] [Related]
39. Advances in the use of the RNA interference technique in Hemiptera. Li J; Wang XP; Wang MQ; Ma WH; Hua HX Insect Sci; 2013 Feb; 20(1):31-9. PubMed ID: 23955823 [TBL] [Abstract][Full Text] [Related]
40. Recent advances in understanding of the mechanisms of RNA interference in insects. Koo J; Palli SR Insect Mol Biol; 2024 Jul; ():. PubMed ID: 38957135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]