These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38469673)

  • 1. Nonadiabatic Molecular Dynamics of Water Cluster Dissociation by Vacuum Ultraviolet Absorption or Electron Impact Excitation.
    Jones LO; Schatz GC
    J Phys Chem B; 2024 Mar; 128(12):2948-2954. PubMed ID: 38469673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited State Nonadiabatic Molecular Dynamics of Hot Electron Addition to Water Clusters in the Ultrafast Femtosecond Regime.
    Jones LO; Schatz GC
    J Phys Chem Lett; 2023 Apr; 14(14):3521-3526. PubMed ID: 37014704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory surface hopping study of propane photodissociation dynamics at 157 nm.
    Rauta AK; Maiti B
    J Chem Phys; 2018 Jul; 149(4):044308. PubMed ID: 30068164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics.
    Yuan K; Dixon RN; Yang X
    Acc Chem Res; 2011 May; 44(5):369-78. PubMed ID: 21428277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodissociation Dynamics of Methyl Hydroperoxide at 193 nm: A Trajectory Surface-Hopping Study.
    Mahata P; Maiti B
    J Phys Chem A; 2021 Dec; 125(48):10321-10329. PubMed ID: 34807597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory surface-hopping study of methane photodissociation dynamics.
    Lodriguito MD; Lendvay G; Schatz GC
    J Chem Phys; 2009 Dec; 131(22):224320. PubMed ID: 20001049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adiabatic and nonadiabatic dissociation of ethyl radical.
    Hostettler JM; Bach A; Chen P
    J Chem Phys; 2009 Jan; 130(3):034303. PubMed ID: 19173517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonergodicity in electron capture dissociation investigated using hydrated ion nanocalorimetry.
    Leib RD; Donald WA; Bush MF; O'Brien JT; Williams ER
    J Am Soc Mass Spectrom; 2007 Jul; 18(7):1217-31. PubMed ID: 17521917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast photo-excitation dynamics in isolated, neutral water clusters.
    Liu HT; Müller JP; Beutler M; Ghotbi M; Noack F; Radloff W; Zhavoronkov N; Schulz CP; Hertel IV
    J Chem Phys; 2011 Mar; 134(9):094305. PubMed ID: 21384967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the electron-impact dissociation of methane.
    Ziółkowski M; Vikár A; Mayes ML; Bencsura Á; Lendvay G; Schatz GC
    J Chem Phys; 2012 Dec; 137(22):22A510. PubMed ID: 23249047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics.
    Koch DM; Timerghazin QK; Peslherbe GH; Ladanyi BM; Hynes JT
    J Phys Chem A; 2006 Feb; 110(4):1438-54. PubMed ID: 16435804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodissociation dynamics of propyne at 193 nm: a trajectory surface hopping study.
    Ghosh S; Rauta AK; Maiti B
    Phys Chem Chem Phys; 2016 Mar; 18(11):8219-27. PubMed ID: 26928947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic transition state theory and trajectory surface hopping dynamics: intersystem crossing between (3)B1 and (1)A1 states of SiH2.
    Zaari RR; Varganov SA
    J Phys Chem A; 2015 Feb; 119(8):1332-8. PubMed ID: 25635385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation.
    Elles CG; Shkrob IA; Crowell RA; Bradforth SE
    J Chem Phys; 2007 Apr; 126(16):164503. PubMed ID: 17477610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense.
    Yonehara T; Takatsuka K
    J Chem Phys; 2012 Dec; 137(22):22A520. PubMed ID: 23249057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
    Larsen RE; Bedard-Hearn MJ; Schwartz BJ
    J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodissociation of FONO: an excited state nonadiabatic dynamics study.
    Hilal AR; Hilal R
    J Mol Model; 2017 Mar; 23(3):77. PubMed ID: 28204944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic Dynamics Studied by Liquid-Jet Time-Resolved Photoelectron Spectroscopy.
    Heim ZN; Neumark DM
    Acc Chem Res; 2022 Dec; 55(24):3652-3662. PubMed ID: 36480155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics.
    Bhattacherjee A; Leone SR
    Acc Chem Res; 2018 Dec; 51(12):3203-3211. PubMed ID: 30462481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Excited-State Proton Relays in the Photochemical Dynamics of Water Nanodroplets.
    Stetina TF; Sun S; Lingerfelt DB; Clark A; Li X
    J Phys Chem Lett; 2019 Jul; 10(13):3694-3698. PubMed ID: 31091108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.