These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38469904)
1. Measuring CSF shunt flow with MRI using flow enhancement of signal intensity (FENSI). Zhang M; Olivero WC; Huston JM; Pappu S; Arnold PM; Biswas A; Anderson AT; Sutton BP Magn Reson Med; 2024 Aug; 92(2):807-819. PubMed ID: 38469904 [TBL] [Abstract][Full Text] [Related]
2. Quantitative noninvasive measurement of cerebrospinal fluid flow in shunted hydrocephalus. Ha JH; Borzage MT; Vanstrum EB; Doyle EK; Upreti M; Tamrazi B; Nelson M; Blüml S; Johal MS; McComb JG; Chu J; Durham S; Krieger MD; Moats RA; Chiarelli PA J Neurosurg; 2024 Apr; 140(4):1117-1128. PubMed ID: 38564811 [TBL] [Abstract][Full Text] [Related]
3. Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus. Sharma AK; Gaikwad S; Gupta V; Garg A; Mishra NK Clin Neurol Neurosurg; 2008 Apr; 110(4):363-8. PubMed ID: 18282655 [TBL] [Abstract][Full Text] [Related]
4. Phase-Contrast MRI Detection of Ventricular Shunt CSF Flow: Proof of Principle. König RE; Stucht D; Baecke S; Rashidi A; Speck O; Sandalcioglu IE; Luchtmann M J Neuroimaging; 2020 Nov; 30(6):746-753. PubMed ID: 33146931 [TBL] [Abstract][Full Text] [Related]
5. Measurement of cerebrospinal fluid output through external ventricular drainage in one hundred infants and children: correlation with cerebrospinal fluid production. Yasuda T; Tomita T; McLone DG; Donovan M Pediatr Neurosurg; 2002 Jan; 36(1):22-8. PubMed ID: 11818742 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study. Pennell T; Yi JL; Kaufman BA; Krishnamurthy S J Neurosurg Pediatr; 2016 Mar; 17(3):270-7. PubMed ID: 26565943 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging analysis of extremely slow flow in a model shunt system. Frank E; Buonocore M; Hein L Childs Nerv Syst; 1992 Mar; 8(2):73-5. PubMed ID: 1591749 [TBL] [Abstract][Full Text] [Related]
9. [Magnetic resonance tomographic imaging of pulsatile CSF movement in communicating hydrocephalus before and after shunt placement]. Goldmann A; Kunz U; Rotermund G; Friedrich JM; Schnarkowski P Rofo; 1992 Dec; 157(6):555-60. PubMed ID: 1457791 [TBL] [Abstract][Full Text] [Related]
10. Mechanism for measurement of flow rate of cerebrospinal fluid in hydrocephalus shunts. Rajasekaran S; Kovar S; Qu P; Inwald D; Williams E; Qu H; Zakalik K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2153-6. PubMed ID: 25570411 [TBL] [Abstract][Full Text] [Related]
11. Cerebrospinal fluid flow dynamics in children with external ventricular drains. Drake JM; Sainte-Rose C; DaSilva M; Hirsch JF Neurosurgery; 1991 Feb; 28(2):242-50. PubMed ID: 1997893 [TBL] [Abstract][Full Text] [Related]
12. Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid flow MR imaging. Bessho T; Hayashi T; Shibukawa S; Kourin K; Shouda T Radiol Phys Technol; 2024 Sep; 17(3):782-792. PubMed ID: 39028437 [TBL] [Abstract][Full Text] [Related]
13. Modeling cerebrospinal fluid dynamics across the entire intracranial space through integration of four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging. Yamada S; Otani T; Ii S; Ito H; Iseki C; Tanikawa M; Watanabe Y; Wada S; Oshima M; Mase M Fluids Barriers CNS; 2024 May; 21(1):47. PubMed ID: 38816737 [TBL] [Abstract][Full Text] [Related]
15. Cerebrospinal Fluid Dynamics and the Pathophysiology of Hydrocephalus: New Concepts. Yamada S; Kelly E Semin Ultrasound CT MR; 2016 Apr; 37(2):84-91. PubMed ID: 27063658 [TBL] [Abstract][Full Text] [Related]
16. Predictor of a permanent shunt after treatment of external ventricular draining in pediatric postinfective hydrocephalus-a retrospective cohort study. Zhang Y; Zhao R; Shi W; Zheng J; Li H; Li Z Childs Nerv Syst; 2021 Jun; 37(6):1877-1882. PubMed ID: 33483758 [TBL] [Abstract][Full Text] [Related]
17. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus. Hamilton RB; Scalzo F; Baldwin K; Dorn A; Vespa P; Hu X; Bergsneider M Fluids Barriers CNS; 2019 Jan; 16(1):2. PubMed ID: 30665428 [TBL] [Abstract][Full Text] [Related]
18. Utility of computed tomography or magnetic resonance imaging evaluation of ventricular morphology in suspected cerebrospinal fluid shunt malfunction. Sellin JN; Cherian J; Barry JM; Ryan SL; Luerssen TG; Jea A J Neurosurg Pediatr; 2014 Aug; 14(2):160-6. PubMed ID: 24856881 [TBL] [Abstract][Full Text] [Related]
19. A radionuclide method of evaluating shunt function and CSF circulation in hydrocephalus. Technical note. Howman-Giles R; McLaughlin A; Johnston I; Whittle I J Neurosurg; 1984 Sep; 61(3):604-5. PubMed ID: 6747702 [TBL] [Abstract][Full Text] [Related]
20. Cerebrospinal Fluid Flow Studies and Recent Advancements. Kelly EJ; Yamada S Semin Ultrasound CT MR; 2016 Apr; 37(2):92-9. PubMed ID: 27063659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]