These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38469908)
1. Structure of liquid-vapor interfaces: Perspectives from liquid state theory, large-scale simulations, and potential grazing-incidence x-ray diffraction. Höfling F; Dietrich S J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38469908 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water. Singh RS; Palmer JC; Panagiotopoulos AZ; Debenedetti PG J Chem Phys; 2019 Jun; 150(22):224503. PubMed ID: 31202225 [TBL] [Abstract][Full Text] [Related]
3. Capillary wave fluctuations and intrinsic widths of coupled fluid-fluid interfaces: an x-ray scattering study of a wetting film on bulk liquid. Fukuto M; Gang O; Alvine KJ; Pershan PS Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031607. PubMed ID: 17025643 [TBL] [Abstract][Full Text] [Related]
4. A refraction correction for buried interfaces applied to in situ grazing-incidence X-ray diffraction studies on Pd electrodes. Landers AT; Koshy DM; Lee SH; Drisdell WS; Davis RC; Hahn C; Mehta A; Jaramillo TF J Synchrotron Radiat; 2021 May; 28(Pt 3):919-923. PubMed ID: 33949999 [TBL] [Abstract][Full Text] [Related]
6. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles. Paliwal S; Prymidis V; Filion L; Dijkstra M J Chem Phys; 2017 Aug; 147(8):084902. PubMed ID: 28863522 [TBL] [Abstract][Full Text] [Related]
7. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids. Paul S; Chandra A J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium between a Droplet and Surrounding Vapor: A Discussion of Finite Size Effects. Tröster A; Schmitz F; Virnau P; Binder K J Phys Chem B; 2018 Apr; 122(13):3407-3417. PubMed ID: 29220178 [TBL] [Abstract][Full Text] [Related]
9. A perspective on the interfacial properties of nanoscopic liquid drops. Malijevský A; Jackson G J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181 [TBL] [Abstract][Full Text] [Related]
10. Logarithmic finite-size effects on interfacial free energies: phenomenological theory and Monte Carlo studies. Schmitz F; Virnau P; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012128. PubMed ID: 25122272 [TBL] [Abstract][Full Text] [Related]
11. Vapor-liquid interfacial properties of fully flexible Lennard-Jones chains. Blas FJ; MacDowell LG; de Miguel E; Jackson G J Chem Phys; 2008 Oct; 129(14):144703. PubMed ID: 19045161 [TBL] [Abstract][Full Text] [Related]
12. Interfacial properties of binary mixtures of Lennard-Jones chains in planar interfaces by molecular dynamics simulation. Granados-Bazán EL; Quiñones-Cisneros SE; Deiters UK J Chem Phys; 2021 Feb; 154(8):084704. PubMed ID: 33639748 [TBL] [Abstract][Full Text] [Related]
13. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture. Díaz-Herrera E; Moreno-Razo JA; Ramírez-Santiago G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051601. PubMed ID: 15600622 [TBL] [Abstract][Full Text] [Related]
14. On the phase and interface behavior along the three-phase line of ternary Lennard-Jones mixtures: a collaborative approach based on square gradient theory and molecular dynamics simulations. Garrido JM; Quinteros-Lama H; Piñeiro MM; Mejía A; Segura H J Chem Phys; 2014 Jul; 141(1):014503. PubMed ID: 25005295 [TBL] [Abstract][Full Text] [Related]
15. Surface tension and vapor-liquid phase coexistence of confined square-well fluid. Singh JK; Kwak SK J Chem Phys; 2007 Jan; 126(2):024702. PubMed ID: 17228961 [TBL] [Abstract][Full Text] [Related]
16. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
17. Molecular interactions at vapor-liquid interfaces: Binary mixtures of simple fluids. Stephan S; Hasse H Phys Rev E; 2020 Jan; 101(1-1):012802. PubMed ID: 32069593 [TBL] [Abstract][Full Text] [Related]
18. Dependence of the liquid-vapor surface tension on the range of interaction: a test of the law of corresponding states. Grosfils P; Lutsko JF J Chem Phys; 2009 Feb; 130(5):054703. PubMed ID: 19206985 [TBL] [Abstract][Full Text] [Related]
19. In-Plane Structure of the Liquid-Vapor Interface of an Alloy: A Grazing Incidence X-ray Diffraction Study of Bismuth:Gallium. Flom EB; Li M; Acero A; Maskil N; Rice SA Science; 1993 Apr; 260(5106):332-5. PubMed ID: 17838250 [TBL] [Abstract][Full Text] [Related]
20. Solvent-mediated interactions between nanoparticles at fluid interfaces. Bresme F; Lehle H; Oettel M J Chem Phys; 2009 Jun; 130(21):214711. PubMed ID: 19508091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]