These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38470065)
1. Neural Network-Based Sum-Frequency Generation Spectra of Pure and Acidified Water Interfaces with Air. de la Puente M; Gomez A; Laage D J Phys Chem Lett; 2024 Mar; 15(11):3096-3102. PubMed ID: 38470065 [TBL] [Abstract][Full Text] [Related]
2. Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface. Zhang P; Feng M; Xu X ACS Phys Chem Au; 2024 Jul; 4(4):336-346. PubMed ID: 39069983 [TBL] [Abstract][Full Text] [Related]
3. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface. Hua W; Verreault D; Allen HC J Am Chem Soc; 2015 Nov; 137(43):13920-6. PubMed ID: 26456219 [TBL] [Abstract][Full Text] [Related]
4. Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions. Yan ECY; Perets EA; Konstantinovsky D; Hammes-Schiffer S Acc Chem Res; 2023 Jun; 56(12):1494-1504. PubMed ID: 37163574 [TBL] [Abstract][Full Text] [Related]
5. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Tang F; Ohto T; Sun S; Rouxel JR; Imoto S; Backus EHG; Mukamel S; Bonn M; Nagata Y Chem Rev; 2020 Apr; 120(8):3633-3667. PubMed ID: 32141737 [TBL] [Abstract][Full Text] [Related]
6. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Jubb AM; Hua W; Allen HC Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics analysis of interfacial structures and sum frequency generation spectra of aqueous hydrogen halide solutions. Ishiyama T; Morita A J Phys Chem A; 2007 Sep; 111(38):9277-85. PubMed ID: 17705456 [TBL] [Abstract][Full Text] [Related]
8. Site-specific vibrational spectral signatures of water molecules in the magic H3O+ (H2O)20 and Cs+ (H2O)20 clusters. Fournier JA; Wolke CT; Johnson CJ; Johnson MA; Heine N; Gewinner S; Schöllkopf W; Esser TK; Fagiani MR; Knorke H; Asmis KR Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18132-7. PubMed ID: 25489068 [TBL] [Abstract][Full Text] [Related]
9. Structure and vibrational spectroscopy of salt water/air interfaces: predictions from classical molecular dynamics simulations. Brown EC; Mucha M; Jungwirth P; Tobias DJ J Phys Chem B; 2005 Apr; 109(16):7934-40. PubMed ID: 16851926 [TBL] [Abstract][Full Text] [Related]
10. Effects of third-order susceptibility in sum frequency generation spectra: a molecular dynamics study in liquid water. Joutsuka T; Hirano T; Sprik M; Morita A Phys Chem Chem Phys; 2018 Jan; 20(5):3040-3053. PubMed ID: 28607983 [TBL] [Abstract][Full Text] [Related]
11. Potassium Hydroxide Concentration-Dependent Water Structure on the Quartz Surface Studied by Combining Sum-Frequency Generation (SFG) Spectroscopy and Molecular Simulations. Lyu Y; Wang Y; Wang S; Liu B; Du H Langmuir; 2019 Sep; 35(36):11651-11661. PubMed ID: 31414813 [TBL] [Abstract][Full Text] [Related]
12. Revealing the molecular structures of α-Al2O3(0001)-water interface by machine learning based computational vibrational spectroscopy. Du X; Shao W; Bao C; Zhang L; Cheng J; Tang F J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39315880 [TBL] [Abstract][Full Text] [Related]
13. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. Ohto T; Usui K; Hasegawa T; Bonn M; Nagata Y J Chem Phys; 2015 Sep; 143(12):124702. PubMed ID: 26429027 [TBL] [Abstract][Full Text] [Related]
14. Consistency in the sum frequency generation intensity and phase vibrational spectra of the air/neat water interface. Feng RR; Guo Y; Lü R; Velarde L; Wang HF J Phys Chem A; 2011 Jun; 115(23):6015-27. PubMed ID: 21306145 [TBL] [Abstract][Full Text] [Related]
15. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. Ni Y; Skinner JL J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483 [TBL] [Abstract][Full Text] [Related]
16. pH effects on the molecular structure and charging state of β-Escin biosurfactants at the air-water interface. Glikman D; García Rey N; Richert M; Meister K; Braunschweig B J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1754-1761. PubMed ID: 34598032 [TBL] [Abstract][Full Text] [Related]
17. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. Gan W; Wu D; Zhang Z; Feng RR; Wang HF J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908 [TBL] [Abstract][Full Text] [Related]
18. Investigating Bénard-Marangoni migration at the air-water interface in the time domain using sum frequency generation (SFG) spectroscopy of palmitic acid monolayers. Fellows AP; Casford MTL; Davies PB J Chem Phys; 2022 Apr; 156(16):164701. PubMed ID: 35490017 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast inter- and intramolecular vibrational energy transfer between molecules at interfaces studied by time- and polarization-resolved SFG spectroscopy. Yamamoto S; Ghosh A; Nienhuys HK; Bonn M Phys Chem Chem Phys; 2010 Oct; 12(40):12909-18. PubMed ID: 20820575 [TBL] [Abstract][Full Text] [Related]
20. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. Perets EA; Konstantinovsky D; Santiago T; Videla PE; Tremblay M; Velarde L; Batista VS; Hammes-Schiffer S; Yan ECY J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39230381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]