These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38470078)
1. Impact of Photoluminescence Imaging Methodology on Transport Parameters in Semiconductors. Banappanavar G; Saxena R; Bässler H; Köhler A; Kabra D J Phys Chem Lett; 2024 Mar; 15(11):3109-3117. PubMed ID: 38470078 [TBL] [Abstract][Full Text] [Related]
2. Efficient Long-Range Triplet Exciton Transport by Metal-Metal Interaction at Room Temperature. Wan Q; Li D; Zou J; Yan T; Zhu R; Xiao K; Yue S; Cui X; Weng Y; Che CM Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202114323. PubMed ID: 34941015 [TBL] [Abstract][Full Text] [Related]
3. Charge recombination and exciton annihilation reactions in conjugated polymer blends. Howard IA; Hodgkiss JM; Zhang X; Kirov KR; Bronstein HA; Williams CK; Friend RH; Westenhoff S; Greenham NC J Am Chem Soc; 2010 Jan; 132(1):328-35. PubMed ID: 19961228 [TBL] [Abstract][Full Text] [Related]
4. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses. Raišys S; Kazlauskas K; Juršėnas S; Simon YC ACS Appl Mater Interfaces; 2016 Jun; 8(24):15732-40. PubMed ID: 27219281 [TBL] [Abstract][Full Text] [Related]
5. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Najafov H; Lee B; Zhou Q; Feldman LC; Podzorov V Nat Mater; 2010 Nov; 9(11):938-43. PubMed ID: 20935655 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Exchange During Triplet Transport in Nanocrystalline TIPS-Pentacene Films. Grieco C; Doucette GS; Pensack RD; Payne MM; Rimshaw A; Scholes GD; Anthony JE; Asbury JB J Am Chem Soc; 2016 Dec; 138(49):16069-16080. PubMed ID: 27960344 [TBL] [Abstract][Full Text] [Related]
7. Triplet and singlet exciton diffusion in disordered rubrene films: implications for photon upconversion. Radiunas E; Dapkevičius M; Raišys S; Kazlauskas K Phys Chem Chem Phys; 2022 Oct; 24(39):24345-24352. PubMed ID: 36177992 [TBL] [Abstract][Full Text] [Related]
8. Direct measurement of the triplet exciton diffusion length in organic semiconductors. Mikhnenko OV; Ruiter R; Blom PW; Loi MA Phys Rev Lett; 2012 Mar; 108(13):137401. PubMed ID: 22540725 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale triplet exciton diffusion via imaging of up-conversion emission from single hybrid nanoparticles in molecular crystals. Narushima K; Hirata S; Vacha M Nanoscale; 2017 Aug; 9(30):10653-10661. PubMed ID: 28608889 [TBL] [Abstract][Full Text] [Related]
10. Suppressing singlet-triplet annihilation processes to achieve highly efficient deep-blue AIE-based OLEDs. Lin C; Han P; Qu F; Xiao S; Li Y; Xie D; Qiao X; Yang D; Dai Y; Sun Q; Qin A; Tang BZ; Ma D Mater Horiz; 2022 Aug; 9(9):2376-2383. PubMed ID: 35789246 [TBL] [Abstract][Full Text] [Related]
11. [Luminescence characteristics of PVK doped with Ir(ppy)3]. Yang SP; Zhang XF; Zhao SL; Xu Z; Zhang FJ; Yang YR; Li Q; Pang XX Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):512-6. PubMed ID: 18536401 [TBL] [Abstract][Full Text] [Related]
13. Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium-Porphyrin-Based Surface-Anchored Metal-Organic Framework. Adams M; Kozlowska M; Baroni N; Oldenburg M; Ma R; Busko D; Turshatov A; Emandi G; Senge MO; Haldar R; Wöll C; Nienhaus GU; Richards BS; Howard IA ACS Appl Mater Interfaces; 2019 May; 11(17):15688-15697. PubMed ID: 30938507 [TBL] [Abstract][Full Text] [Related]
14. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Giannini S; Blumberger J Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456 [TBL] [Abstract][Full Text] [Related]
15. Polarization-resolved spectroscopy imaging of grain boundaries and optical excitations in crystalline organic thin films. Pan Z; Rawat N; Cour I; Manning L; Headrick RL; Furis M Nat Commun; 2015 Sep; 6():8201. PubMed ID: 26365682 [TBL] [Abstract][Full Text] [Related]
16. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Polak D; Jayaprakash R; Lyons TP; Martínez-Martínez LÁ; Leventis A; Fallon KJ; Coulthard H; Bossanyi DG; Georgiou K; Petty Ii AJ; Anthony J; Bronstein H; Yuen-Zhou J; Tartakovskii AI; Clark J; Musser AJ Chem Sci; 2020 Jan; 11(2):343-354. PubMed ID: 32190258 [TBL] [Abstract][Full Text] [Related]
17. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions. Watanabe S; Furube A; Katoh R J Phys Chem A; 2006 Aug; 110(34):10173-8. PubMed ID: 16928104 [TBL] [Abstract][Full Text] [Related]
18. Interfacial-Water-Modulated Photoluminescence of Single-Layer WS Kim Y; Kang H; Song M; Kwon H; Ryu S Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834902 [TBL] [Abstract][Full Text] [Related]
19. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. Guo J; Ohkita H; Benten H; Ito S J Am Chem Soc; 2009 Nov; 131(46):16869-80. PubMed ID: 19886624 [TBL] [Abstract][Full Text] [Related]
20. Effective Negative Diffusion of Singlet Excitons in Organic Semiconductors. Berghuis AM; Raziman TV; Halpin A; Wang S; Curto AG; Rivas JG J Phys Chem Lett; 2021 Feb; 12(4):1360-1366. PubMed ID: 33507078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]