These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38470331)

  • 1. Enhanced Selective Electrosorption of Nitrate from Wastewater by Controllably Doping Nitrogen into Porous Carbon with Micropores.
    Wang Y; Ge Y; Liu Z; Wang R; Chen Y; Qian H; Yin Z; Liu F; Zhu L; Yang W
    Langmuir; 2024 Mar; 40(12):6353-6362. PubMed ID: 38470331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eggshell membrane derived nitrogen rich porous carbon for selective electrosorption of nitrate from water.
    Chen J; Zuo K; Li Y; Huang X; Hu J; Yang Y; Wang W; Chen L; Jain A; Verduzco R; Li X; Li Q
    Water Res; 2022 Jun; 216():118351. PubMed ID: 35390703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced phosphorus electrosorption using Fe, N-co-doped porous electrode via capacitive deionization.
    Chen X; Song X; Chen W; Ao T
    Environ Technol; 2024 Jul; 45(17):3381-3395. PubMed ID: 37191243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective adsorption of nitrate over chloride in microporous carbons.
    Mubita TM; Dykstra JE; Biesheuvel PM; van der Wal A; Porada S
    Water Res; 2019 Nov; 164():114885. PubMed ID: 31426005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation, quantification and application of the effect of functional groups on anion selectivity in capacitive deionization.
    Deng W; Chen Y; Wang Z; Chen X; Gao M; Chen F; Chen W; Ao T
    Water Res; 2022 Aug; 222():118927. PubMed ID: 35933818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization.
    Sun Z; Chai L; Liu M; Shu Y; Li Q; Wang Y; Qiu D
    Chemosphere; 2018 Mar; 195():282-290. PubMed ID: 29272797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation selectivity of activated carbon and nickel hexacyanoferrate electrode materials in capacitive deionization: A comparison study.
    Chen TH; Cuong DV; Jang Y; Khu NZ; Chung E; Hou CH
    Chemosphere; 2022 Nov; 307(Pt 1):135613. PubMed ID: 35810870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution.
    Shen YY; Wu SW; Hou CH
    J Colloid Interface Sci; 2021 Mar; 586():819-829. PubMed ID: 33198978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion selectivity in capacitive deionization with functionalized electrode: Theory and experimental validation.
    Oyarzun DI; Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res X; 2018 Dec; 1():100008. PubMed ID: 31194024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization.
    Xiang S; Mao H; Geng W; Xu Y; Zhou H
    J Hazard Mater; 2022 Jun; 431():128591. PubMed ID: 35247739
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation of high performance porous carbon by microwave synergistic nitrogen/phosphorus doping for efficient removal of Cu
    Huang H; Chen Y; Ma R; Luo J; Sun S; Lin J; Wang Y
    Environ Res; 2023 Apr; 222():115342. PubMed ID: 36690244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization.
    Miao L; Deng W; Chen X; Gao M; Chen W; Ao T
    Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions.
    Liu NL; Dutta S; Salunkhe RR; Ahamad T; Alshehri SM; Yamauchi Y; Hou CH; Wu KC
    Sci Rep; 2016 Jul; 6():28847. PubMed ID: 27404086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes.
    Guyes EN; Malka T; Suss ME
    Environ Sci Technol; 2019 Jul; 53(14):8447-8454. PubMed ID: 31187620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization.
    Wang Z; Yan T; Shi L; Zhang D
    ACS Appl Mater Interfaces; 2017 May; 9(17):15068-15078. PubMed ID: 28418233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.