These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38470369)

  • 1. Effect of dimensionality on the excitation wavelength dependence of the Fano-Raman line-shape: a brief review.
    Tanwar M; Kumar R
    Nanoscale; 2024 Mar; 16(13):6429-6441. PubMed ID: 38470369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS
    Tanwar M; Bansal L; Rani C; Rani S; Kandpal S; Ghosh T; Pathak DK; Sameera I; Bhatia R; Kumar R
    ACS Phys Chem Au; 2022 Sep; 2(5):417-422. PubMed ID: 36855687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy dispersive anti-anharmonic effect in a Fano intervened semiconductor: revealed through temperature and wavelength-dependent Raman scattering.
    Rani C; Kandpal S; Ghosh T; Bansal L; Tanwar M; Kumar R
    Phys Chem Chem Phys; 2023 Jan; 25(3):1627-1631. PubMed ID: 36601877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes.
    Saxena SK; Yogi P; Mishra S; Rai HM; Mishra V; Warshi MK; Roy S; Mondal P; Sagdeo PR; Kumar R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31788-31795. PubMed ID: 29170785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano-type discrete-continuum interaction in perovskites and its manifestation in Raman spectral line shapes.
    Rani C; Kumar R
    Chem Commun (Camb); 2024 Feb; 60(16):2115-2124. PubMed ID: 38284275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum confined electron-phonon interaction in silicon nanocrystals.
    Sagar DM; Atkin JM; Palomaki PK; Neale NR; Blackburn JL; Johnson JC; Nozik AJ; Raschke MB; Beard MC
    Nano Lett; 2015 Mar; 15(3):1511-6. PubMed ID: 25626139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials.
    Liu B; Tang C; Chen J; Zhu M; Pei M; Zhu X
    Sci Rep; 2017 Dec; 7(1):17117. PubMed ID: 29215032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-Anomalous Size-Dependent Electron-Phonon Interaction in Graded Energy Band: Solving the Fano Paradox.
    Tanwar M; Pathak DK; Chaudhary A; Krylov AS; Pfnür H; Sharma A; Ahn B; Lee S; Kumar R
    J Phys Chem Lett; 2021 Mar; 12(8):2044-2051. PubMed ID: 33606540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Temperature-Dependent Phonon Decay in Heavily Doped Silicon: Predominant Interferon-Mediated Cold Phonon Annihilation.
    Rani C; Tanwar M; Kandpal S; Ghosh T; Bansal L; Kumar R
    J Phys Chem Lett; 2022 Jun; ():5232-5239. PubMed ID: 35670640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes.
    Bora A; Mawlong LPL; Das R; Giri PK
    J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manifestation of anharmonicities in terms of Fano scattering and phonon lifetime of scissors modes in α-MoO
    Nitharwal RK; Kumar V; Sahoo A; Rao MSR; Dixit T; Krishnan S
    Phys Chem Chem Phys; 2024 Jun; 26(25):17892-17901. PubMed ID: 38887960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon.
    Rani C; Tanwar M; Ghosh T; Kandpal S; Pathak DK; Chaudhary A; Yogi P; Saxena SK; Kumar R
    Anal Chem; 2022 Jan; 94(3):1510-1514. PubMed ID: 34994546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-shaped silicon waveguide coupled with a micro-ring resonator-based Fano resonance modulator.
    Xu Y; Lu L; Chen G; Liao J; Xu X; Ou J; Zhu L
    Appl Opt; 2022 Nov; 61(31):9217-9224. PubMed ID: 36607056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fano resonance of Li-doped KTa(1-x)NbxO3 single crystals studied by Raman scattering.
    Rahaman MM; Imai T; Sakamoto T; Tsukada S; Kojima S
    Sci Rep; 2016 Apr; 6():23898. PubMed ID: 27049847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Fano resonance with strong polarization dependence in gold nanoplate-nanosphere heterodimers.
    Qin F; Lai Y; Yang J; Cui X; Ma H; Wang J; Lin HQ
    Nanoscale; 2017 Sep; 9(35):13222-13234. PubMed ID: 28853475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-Tailored Fano Interference in Plasmonic Crystals: A Mueller Matrix Model of Anisotropic Fano Resonance.
    Ray SK; Chandel S; Singh AK; Kumar A; Mandal A; Misra S; Mitra P; Ghosh N
    ACS Nano; 2017 Feb; 11(2):1641-1648. PubMed ID: 28071887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fano-Liouville spectral signatures in open quantum systems.
    Finkelstein-Shapiro D; Urdaneta I; Calatayud M; Atabek O; Mujica V; Keller A
    Phys Rev Lett; 2015 Sep; 115(11):113006. PubMed ID: 26406830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengthening Fano resonance on gold nanoplates with gold nanospheres.
    Cui X; Lai Y; Qin F; Shao L; Wang J; Lin HQ
    Nanoscale; 2020 Jan; 12(3):1975-1984. PubMed ID: 31912072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.