These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38470412)

  • 1. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics.
    Park J; Kadam PS; Atiyas Y; Chhay B; Tsourkas A; Eberwine JH; Issadore DA
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401544. PubMed ID: 38470412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput single-cell, single-mitochondrial DNA assay using hydrogel droplet microfluidics.
    Park J; Kadam PS; Atiyas Y; Chhay B; Tsourkas A; Eberwine JH; Issadore DA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy.
    Marquis J; Lefebvre G; Kourmpetis YAI; Kassam M; Ronga F; De Marchi U; Wiederkehr A; Descombes P
    BMC Genomics; 2017 Apr; 18(1):326. PubMed ID: 28441938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification.
    Chen F; Xue J; Bai M; Fan C; Zhao Y
    Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.
    Zhang H; Jenkins G; Zou Y; Zhu Z; Yang CJ
    Anal Chem; 2012 Apr; 84(8):3599-606. PubMed ID: 22455457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics.
    Geng T; Mathies RA
    Forensic Sci Int Genet; 2015 Jan; 14():203-9. PubMed ID: 25450795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering.
    Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y
    Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR.
    Leng X; Zhang W; Wang C; Cui L; Yang CJ
    Lab Chip; 2010 Nov; 10(21):2841-3. PubMed ID: 20835492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid molecular diagnosis of infectious viruses in microfluidics using DNA hydrogel formation.
    Na W; Nam D; Lee H; Shin S
    Biosens Bioelectron; 2018 Jun; 108():9-13. PubMed ID: 29494886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.
    Moon HS; Je K; Min JW; Park D; Han KY; Shin SH; Park WY; Yoo CE; Kim SH
    Lab Chip; 2018 Feb; 18(5):775-784. PubMed ID: 29423464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation.
    Kumachev A; Greener J; Tumarkin E; Eiser E; Zandstra PW; Kumacheva E
    Biomaterials; 2011 Feb; 32(6):1477-83. PubMed ID: 21095000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics.
    Tiemeijer BM; Sweep MWD; Sleeboom JJF; Steps KJ; van Sprang JF; De Almeida P; Hammink R; Kouwer PHJ; Smits AIPM; Tel J
    Front Bioeng Biotechnol; 2021; 9():715408. PubMed ID: 34722475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process.
    Nam J; Jang WS; Kim J; Lee H; Lim CS
    Biosens Bioelectron; 2019 Oct; 142():111496. PubMed ID: 31302395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet-based cell-laden microgels for high-throughput analysis.
    Li X; Zhao D; Wang Y; Huang H
    Trends Biotechnol; 2024 Apr; 42(4):397-401. PubMed ID: 37953082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing HetHydrogel: A Universal Platform to Dropletize Single-Cell Multiomics.
    Zhou G; Li T; Du J; Wu M; Lin D; Pu W; Zhang J; Gu Z
    Small Methods; 2024 Jul; 8(7):e2301631. PubMed ID: 38419597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases.
    Maeda R; Kami D; Maeda H; Shikuma A; Gojo S
    Sci Rep; 2020 Jul; 10(1):10821. PubMed ID: 32616755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Emulsion Flow Cytometry for Rapid Single Genome Detection.
    Cowell T; Han HS
    Methods Mol Biol; 2023; 2689():155-167. PubMed ID: 37430053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.