These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38470605)

  • 1. Explicit Topology Optimization of Voronoi Foams.
    Li M; Hu J; Chen W; Kong W; Huang J
    IEEE Trans Vis Comput Graph; 2024 Mar; PP():. PubMed ID: 38470605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial.
    Dewey MJ; Chang RSH; Nosatov AV; Janssen K; Crotts SJ; Hollister SJ; Harley BAC
    Acta Biomater; 2023 Dec; 172():249-259. PubMed ID: 37806375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and Numerical Study of Thermal Performance of Gradient Porous Structures Based on Voronoi Tessellation Design.
    Zhang X; Zhang M; Zhang C; Zhou T; Wu X; Yue X
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements and micro-mechanical modelling of the response of sintered titanium foams.
    Siegkas P; Petrinic N; Tagarielli VL
    J Mech Behav Biomed Mater; 2016 Apr; 57():365-75. PubMed ID: 26947273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voronoi tessellation-based algorithm for determining rigorously defined classical and generalized geometric pore size distributions.
    Agrawal S; Galmarini S; Kröger M
    Phys Rev E; 2023 Jan; 107(1-2):015307. PubMed ID: 36797966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy.
    Yi Y; Zheng X; Fu Z; Wang C; Xu X; Tan X
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29510553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading.
    Liang M; Li X; Lin Y; Zhang K; Lu F
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31058872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the effect of the size irregularity gradient of metal foams on macroscopic compressive properties.
    Zhang X; Tang L; Yang B; Hu H; Tan S
    Heliyon; 2022 Dec; 8(12):e12531. PubMed ID: 36593857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Mechanical Properties Verification of Gradient Voronoi Scaffold for Bone Tissue Engineering.
    Zhao H; Han Y; Pan C; Yang D; Wang H; Wang T; Zeng X; Su P
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations.
    Brehm M; Thomas M
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33810337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of random monodisperse foam.
    Kraynik AM; Reinelt DA; van Swol F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031403. PubMed ID: 12689063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Porosity on the Mechanical Behavior during Uniaxial Compressive Testing on Voronoi-Based Open-Cell Aluminium Foam.
    Sharma V; Grujovic N; Zivic F; Slavkovic V
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cell Geometry on the Mechanical Properties of 3D Voronoi Tessellation.
    Alknery Z; Sktani ZDI; Arab A
    J Funct Biomater; 2022 Dec; 13(4):. PubMed ID: 36547562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams.
    Mirski R; Dukarska D; Walkiewicz J; Derkowski A
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additively Manufactured Multilevel Voronoi-Lattice Scaffolds with Bonelike Mechanical Properties.
    Zou S; Gong H; Gao J
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3022-3037. PubMed ID: 35537212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams.
    Kim JK; Cho Y; Laskowski RA; Ryu SE; Sugihara K; Kim DS
    Proteins; 2014 Sep; 82(9):1829-49. PubMed ID: 24677176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topology of slightly polydisperse real foams.
    Monnereau C; Prunet-Foch B; Vignes-Adler M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061402. PubMed ID: 11415099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method.
    Lee JS; Kim YY; Kim JS; Kang YJ
    J Acoust Soc Am; 2008 Apr; 123(4):2094-106. PubMed ID: 18397017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.