These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38470729)
1. Superprotonic Conductivity in a Metalloporphyrin-Based SMOF (Supramolecular Metal-Organic Framework). Fidalgo-Marijuan A; Ruiz de Larramendi I; Barandika G Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470729 [TBL] [Abstract][Full Text] [Related]
2. Double role of metalloporphyrins in catalytic bioinspired supramolecular metal-organic frameworks (SMOFs). Fidalgo-Marijuan A; Amayuelas E; Barandika G; Larrea ES; Bazán B; Urtiaga MK; Iglesias M; Arriortua MI IUCrJ; 2018 Sep; 5(Pt 5):559-568. PubMed ID: 30224959 [TBL] [Abstract][Full Text] [Related]
3. Metal-Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 Chand S; Elahi SM; Pal A; Das MC Chemistry; 2019 May; 25(25):6259-6269. PubMed ID: 30677177 [TBL] [Abstract][Full Text] [Related]
4. Remarkable water-mediated proton conductivity of two porous zirconium(IV)/hafnium(IV) metal-organic frameworks bearing porphyrinlcarboxylate ligands. Zhuang Q; Kang LL; Zhang BY; Li ZF; Li G J Colloid Interface Sci; 2024 Mar; 657():482-490. PubMed ID: 38070334 [TBL] [Abstract][Full Text] [Related]
5. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Sharma A; Lim J; Lee S; Han S; Seong J; Bin Baek S; Soo Lah M Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302376. PubMed ID: 37160648 [TBL] [Abstract][Full Text] [Related]
6. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks. Rautenberg M; Bhattacharya B; Das C; Emmerling F Inorg Chem; 2022 Jul; 61(28):10801-10809. PubMed ID: 35776665 [TBL] [Abstract][Full Text] [Related]
7. Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate and Sulfonate Functional Groups. Guo YY; Wang RD; Wei WM; Fang F; Wang L; Zhang SS; Zhang J; Du L; Zhao QH Inorg Chem; 2024 Feb; 63(8):3870-3881. PubMed ID: 38356223 [TBL] [Abstract][Full Text] [Related]
8. High H Feng J; Li Y; Xie L; Tong J; Li G Molecules; 2024 Jun; 29(11):. PubMed ID: 38893530 [TBL] [Abstract][Full Text] [Related]
10. A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal-Organic Framework. Otsubo K; Nagayama S; Kawaguchi S; Sugimoto K; Kitagawa H JACS Au; 2022 Jan; 2(1):109-115. PubMed ID: 35098227 [TBL] [Abstract][Full Text] [Related]
11. Superprotonic Conductivity of a Functionalized Metal-Organic Framework at Ambient Conditions. Li XM; Wang Y; Mu Y; Liu J; Zeng L; Lan YQ ACS Appl Mater Interfaces; 2022 Feb; 14(7):9264-9271. PubMed ID: 35138786 [TBL] [Abstract][Full Text] [Related]
12. Proton Conductive Lanthanide-Based Metal-Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Ren HM; Wang HW; Jiang YF; Tao ZX; Mu CY; Li G Top Curr Chem (Cham); 2022 Feb; 380(2):9. PubMed ID: 35119539 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal-Organic Frameworks. Kolokolov DI; Lim DW; Kitagawa H Chem Rec; 2020 Nov; 20(11):1297-1313. PubMed ID: 32959508 [TBL] [Abstract][Full Text] [Related]
14. Achieving Amphibious Superprotonic Conductivity in a Cu Khatua S; Bar AK; Sheikh JA; Clearfield A; Konar S Chemistry; 2018 Jan; 24(4):872-880. PubMed ID: 29064595 [TBL] [Abstract][Full Text] [Related]
15. High and Tunable Proton Conduction in Six 3D-Substituted Imidazole Dicarboxylate-Based Lanthanide-Organic Frameworks. Liu R; Yu YH; Wang HW; Liu YY; Li G Inorg Chem; 2021 Jul; 60(14):10808-10818. PubMed ID: 34210127 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials. Karmakar A; Illathvalappil R; Anothumakkool B; Sen A; Samanta P; Desai AV; Kurungot S; Ghosh SK Angew Chem Int Ed Engl; 2016 Aug; 55(36):10667-71. PubMed ID: 27464784 [TBL] [Abstract][Full Text] [Related]
17. Humidity-sensitive irreversible phase transformation of open-framework zinc phosphate and its water-assisted high proton conduction properties. Yu JW; Yu HJ; Ren Q; Zhang J; Zou Y; Luo HB; Wang L; Ren XM Dalton Trans; 2021 Jun; 50(23):8070-8075. PubMed ID: 34018519 [TBL] [Abstract][Full Text] [Related]
18. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Liu QQ; Liu SS; Liu XF; Xu XJ; Dong XY; Zhang HJ; Zang SQ Inorg Chem; 2022 Feb; 61(8):3406-3411. PubMed ID: 35170960 [TBL] [Abstract][Full Text] [Related]
19. From non-conductive MOF to proton-conducting metal-HOFs: a new class of reversible transformations induced by solvent-free mechanochemistry. Lupa-Myszkowska M; Oszajca M; Matoga D Chem Sci; 2023 Dec; 14(48):14176-14181. PubMed ID: 38098718 [TBL] [Abstract][Full Text] [Related]
20. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]