These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38470746)

  • 1. Catalysis by Metal-Oxide Nanostructures.
    Carabineiro SAC
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional metal oxide nanostructures for heterogeneous catalysis.
    Zhang Q; Wang HY; Jia X; Liu B; Yang Y
    Nanoscale; 2013 Aug; 5(16):7175-83. PubMed ID: 23836325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-controlled nanostructures in heterogeneous catalysis.
    Zaera F
    ChemSusChem; 2013 Oct; 6(10):1797-820. PubMed ID: 24014476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology.
    Xie M; Hu Y; Yin J; Zhao Z; Chen J; Chao J
    Research (Wash D C); 2022; 2022():9840131. PubMed ID: 35935136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide.
    Lightcap IV; Kosel TH; Kamat PV
    Nano Lett; 2010 Feb; 10(2):577-83. PubMed ID: 20055433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis.
    Ortiz-Medina J; Wang Z; Cruz-Silva R; Morelos-Gomez A; Wang F; Yao X; Terrones M; Endo M
    Adv Mater; 2019 Mar; 31(13):e1805717. PubMed ID: 30687977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembling materials with DNA as the guide.
    Aldaye FA; Palmer AL; Sleiman HF
    Science; 2008 Sep; 321(5897):1795-9. PubMed ID: 18818351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M=Pd, Pt; oxide=TiO2, ZrO2) nanostructures by self-assembly.
    Bakhmutsky K; Wieder NL; Cargnello M; Galloway B; Fornasiero P; Gorte RJ
    ChemSusChem; 2012 Jan; 5(1):140-8. PubMed ID: 22250137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts?
    Zhao M; Zhang N; Yang R; Chen D; Zhao Y
    Adv Healthc Mater; 2021 Apr; 10(8):e2001897. PubMed ID: 33326185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis.
    Schwenzer B; Gomm JR; Morse DE
    Langmuir; 2006 Nov; 22(24):9829-31. PubMed ID: 17106969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
    Astruc D; Lu F; Aranzaes JR
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7852-72. PubMed ID: 16304662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prussian blue nanozymes: progress, challenges, and opportunities.
    He H; Long M; Duan Y; Gu N
    Nanoscale; 2023 Aug; 15(31):12818-12839. PubMed ID: 37496423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenic Synthesis of Metal/Metal Oxide Nanostructured Materials.
    Mondal A; Umekar MS; Bhusari GS; Chouke PB; Lambat T; Mondal S; Chaudhary RG; Mahmood SH
    Curr Pharm Biotechnol; 2021; 22(13):1782-1793. PubMed ID: 33430726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loading metal nanostructures on cotton fabrics as recyclable catalysts.
    Yang B; Zhao C; Xiao M; Wang F; Li C; Wang J; Yu JC
    Small; 2013 Apr; 9(7):1003-7. PubMed ID: 23239587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.
    Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H
    ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured MoO
    Zhu Y; Yao Y; Luo Z; Pan C; Yang J; Fang Y; Deng H; Liu C; Tan Q; Liu F; Guo Y
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31861563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation.
    Pascariu P; Gherasim C; Airinei A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancements in applications of nanotechnology in global food industry.
    Sahani S; Sharma YC
    Food Chem; 2021 Apr; 342():128318. PubMed ID: 33189478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.
    Romashov LV; Ananikov VP
    Chemistry; 2013 Dec; 19(52):17640-60. PubMed ID: 24288138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteins and Peptides at the Interfaces of Nanostructures.
    Brito AMM; Belleti E; Menezes LR; Lanfredi AJC; Nantes-Cardos IL
    An Acad Bras Cienc; 2019; 91(4):e20181236. PubMed ID: 31778457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.