These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38470782)

  • 1. A Photochemically Active Cu
    He Y; Zan J; He Z; Bai X; Shuai C; Pan H
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Enhanced Antibacterial and Antifouling Behavior of Three-Dimensional Porous Cu
    Li H; Zhang L; Zhang X; Zhu G; Zheng D; Luo S; Wu M; Li WH; Liu FQ
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38808-38820. PubMed ID: 37526484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced
    Li N; Yan W; Niu Y; Qu S; Zuo P; Bai H; Zhao N
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9838-9845. PubMed ID: 33595271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Vacancies in Shape Controlled Cu
    Liu J; Ke J; Li D; Sun H; Liang P; Duan X; Tian W; Tadé MO; Liu S; Wang S
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11678-11688. PubMed ID: 28301134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of antibacterial dopamine-functionalized reduced graphene oxide/PLLA composite nanofibers.
    Li B; Xiong F; Yao B; Du Q; Cao J; Qu J; Feng W; Yuan H
    RSC Adv; 2020 May; 10(32):18614-18623. PubMed ID: 35518341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CuS@g-C
    Qi F; Li H; Chen G; Peng S; Luo X; Xiong S; Zhu H; Shuai C
    Colloids Surf B Biointerfaces; 2023 Oct; 230():113512. PubMed ID: 37595378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity.
    Feng H; Wang W; Wang W; Zhang M; Wang C; Ma C; Li W; Chen S
    J Colloid Interface Sci; 2021 Nov; 601():531-543. PubMed ID: 34090030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring Interfacial Physicochemical Properties in Cu
    Shenoy S; Chuaicham C; Shanmugam M; Okumura T; Balijapalli U; Li W; Balakumar V; Sasaki K; Sekar K
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):54105-54118. PubMed ID: 37948059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the photocatalytic performance of Cu
    Ma Y; Wei X; Aishanjiang K; Fu Y; Le J; Wu H
    RSC Adv; 2022 Oct; 12(48):31415-31423. PubMed ID: 36349024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient removal of TBBPA with a Z-scheme BiVO
    Li Y; Kexin Chen ; Wang X; Xiao Z; Liao G; Wang J; Li X; Tang Y; He C; Li L
    Chemosphere; 2022 Dec; 308(Pt 2):136259. PubMed ID: 36057348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous synthesis of Cu
    Su R; Ge S; Li H; Su Y; Li Q; Zhou W; Gao B; Yue Q
    Sci Total Environ; 2019 Nov; 693():133657. PubMed ID: 31635004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of Cr(Ⅵ) and tetracycline from wastewater by dielectric barrier discharge plasma coupled with TiO
    Peng H; Duan L; Xie W; Shao C; Cao H; Wang D; Rao S; Guo H
    Chemosphere; 2024 Jan; 346():140614. PubMed ID: 37926168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly visible-light-responsive Cu
    Liu SH; Lu JS; Yang SW
    Nanotechnology; 2018 Jul; 29(30):305606. PubMed ID: 29737305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O.
    Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC
    Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Cu
    Huang M; Wang Y; Ying S; Wu Z; Liu W; Chen D; Peng C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-redox reaction driven in situ formation of Cu
    Hsu YJ; Nain A; Lin YF; Tseng YT; Li YJ; Sangili A; Srivastava P; Yu HL; Huang YF; Huang CC; Chang HT
    J Nanobiotechnology; 2022 May; 20(1):235. PubMed ID: 35590324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic performance of Cu
    Dong K; He J; Liu J; Li F; Yu L; Zhang Y; Zhou X; Ma H
    J Mater Sci; 2017; 52(11):6754-6766. PubMed ID: 28356603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ preparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange.
    Zhang W; Li X; Yang Z; Tang X; Ma Y; Li M; Hu N; Wei H; Zhang Y
    Nanotechnology; 2016 Jul; 27(26):265703. PubMed ID: 27196539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Photoelectric Properties of Pr-Doped p-Cu
    Wei Y; Ji Q; Wang K; Zhang J; Niu J; Yu X
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.