These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Lee S; Choi J; Youn J; Lee Y; Kim W; Choe S; Song J; Reis RL; Khang G Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439850 [TBL] [Abstract][Full Text] [Related]
4. Bioinspired Injectable Hydrogels Dynamically Stiffen and Contract to Promote Mechanosensing-Mediated Chondrogenic Commitment of Stem Cells. Mahajan A; Singh A; Datta D; Katti DS ACS Appl Mater Interfaces; 2022 Feb; 14(6):7531-7550. PubMed ID: 35119254 [TBL] [Abstract][Full Text] [Related]
6. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Ziadlou R; Rotman S; Teuschl A; Salzer E; Barbero A; Martin I; Alini M; Eglin D; Grad S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111701. PubMed ID: 33545860 [TBL] [Abstract][Full Text] [Related]
8. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700 [TBL] [Abstract][Full Text] [Related]
9. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462 [TBL] [Abstract][Full Text] [Related]
10. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. Fathi-Achachelouei M; Keskin D; Bat E; Vrana NE; Tezcaner A J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2041-2062. PubMed ID: 31872975 [TBL] [Abstract][Full Text] [Related]
11. Silk Fiber-Reinforced Hyaluronic Acid-Based Hydrogel for Cartilage Tissue Engineering. Weitkamp JT; Wöltje M; Nußpickel B; Schmidt FN; Aibibu D; Bayer A; Eglin D; Armiento AR; Arnold P; Cherif C; Lucius R; Smeets R; Kurz B; Behrendt P Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807323 [TBL] [Abstract][Full Text] [Related]
12. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. Zhang Z; Lin S; Yan Y; You X; Ye H J Biomater Sci Polym Ed; 2021 Dec; 32(18):2402-2422. PubMed ID: 34428384 [TBL] [Abstract][Full Text] [Related]
13. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. Singh YP; Bhardwaj N; Mandal BB ACS Appl Mater Interfaces; 2016 Aug; 8(33):21236-49. PubMed ID: 27459679 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
15. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Li Y; Liu Y; Guo Q Arthritis Res Ther; 2021 Feb; 23(1):50. PubMed ID: 33531052 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
17. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Zheng D; Chen T; Han L; Lv S; Yin J; Yang K; Wang Y; Xu N Int Wound J; 2022 Aug; 19(5):1023-1038. PubMed ID: 35266304 [TBL] [Abstract][Full Text] [Related]
18. Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Bordbar S; Li Z; Lotfibakhshaiesh N; Ai J; Tavassoli A; Beheshtizadeh N; Vainieri L; Khanmohammadi M; Sayahpour FA; Baghaban Eslaminejad M; Azami M; Grad S; Alini M Sci Rep; 2024 May; 14(1):11991. PubMed ID: 38796487 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic approach for an articular cartilage patch: Combination of decellularized cartilage matrix and silk-elastin-like-protein (SELP) hydrogel. Ravanetti F; Borghetti P; Zoboli M; Veloso PM; De Angelis E; Ciccimarra R; Saleri R; Cacchioli A; Gazza F; Machado R; Ragionieri L; Attanasio C Ann Anat; 2023 Oct; 250():152144. PubMed ID: 37574174 [TBL] [Abstract][Full Text] [Related]
20. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration. Shao J; Ding Z; Li L; Chen Y; Zhu J; Qian Q J Photochem Photobiol B; 2020 Jan; 203():111744. PubMed ID: 31887637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]