These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38470995)

  • 1. Directional Δ
    Metcalf DP; Glick ZL; Bortolato A; Jiang A; Cheney DL; Sherrill CD
    J Chem Inf Model; 2024 Mar; 64(6):1907-1918. PubMed ID: 38470995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction.
    Yi Y; Wan X; Zhao K; Ou-Yang L; Zhao P
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4336-4347. PubMed ID: 38551822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Physics-Guided Neural Network for Predicting Protein-Ligand Binding Free Energy: From Host-Guest Systems to the PDBbind Database.
    Cain S; Risheh A; Forouzesh N
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes.
    Eismann S; Townshend RJL; Thomas N; Jagota M; Jing B; Dror RO
    Proteins; 2021 May; 89(5):493-501. PubMed ID: 33289162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction.
    Wang K; Zhou R; Tang J; Li M
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37225408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LigBind: Identifying Binding Residues for Over 1000 Ligands with Relation-Aware Graph Neural Networks.
    Xia Y; Pan X; Shen HB
    J Mol Biol; 2023 Jul; 435(13):168091. PubMed ID: 37054909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: II. regression and dielectric constant.
    Liu X; Zheng L; Cong Y; Gong Z; Yin Z; Zhang JZH; Liu Z; Sun Z
    J Comput Aided Mol Des; 2022 Dec; 36(12):879-894. PubMed ID: 36394776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations.
    Huai Z; Yang H; Li X; Sun Z
    J Comput Aided Mol Des; 2021 Jan; 35(1):117-129. PubMed ID: 33037549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA
    Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.