These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38470995)

  • 21. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA
    Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions.
    Wang DD; Zhu M; Yan H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An artificial neural network model to predict structure-based protein-protein free energy of binding from Rosetta-calculated properties.
    Ferraz MVF; Neto JCS; Lins RD; Teixeira ES
    Phys Chem Chem Phys; 2023 Mar; 25(10):7257-7267. PubMed ID: 36810523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.
    Gale-Day ZJ; Shub L; Chuang KV; Keiser MJ
    J Chem Inf Model; 2024 Jul; 64(14):5439-5450. PubMed ID: 38953560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometric Interaction Graph Neural Network for Predicting Protein-Ligand Binding Affinities from 3D Structures (GIGN).
    Yang Z; Zhong W; Lv Q; Dong T; Yu-Chian Chen C
    J Phys Chem Lett; 2023 Mar; 14(8):2020-2033. PubMed ID: 36794930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein-Ligand Binding Affinity Prediction.
    Kyro GW; Brent RI; Batista VS
    J Chem Inf Model; 2023 Apr; 63(7):1947-1960. PubMed ID: 36988912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex machine learning model needs complex testing: Examining predictability of molecular binding affinity by a graph neural network.
    Nikolaienko T; Gurbych O; Druchok M
    J Comput Chem; 2022 Apr; 43(10):728-739. PubMed ID: 35201629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Frustration to Predict Binding Affinities from Protein-Ligand Structures with Deep Neural Networks.
    Volkov M; Turk JA; Drizard N; Martin N; Hoffmann B; Gaston-Mathé Y; Rognan D
    J Med Chem; 2022 Jun; 65(11):7946-7958. PubMed ID: 35608179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. graphLambda: Fusion Graph Neural Networks for Binding Affinity Prediction.
    Mqawass G; Popov P
    J Chem Inf Model; 2024 Apr; 64(7):2323-2330. PubMed ID: 38366974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving
    McNutt AT; Koes DR
    J Chem Inf Model; 2022 Apr; 62(8):1819-1829. PubMed ID: 35380443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors.
    Singh N; Li W
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.