BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38471253)

  • 1. Synergistic interaction between scrap tyre and plastics for the production of sulphur-free, light oil from fast co-pyrolysis.
    Dewi WN; Zhou Q; Mollah M; Yang S; Ilankoon IMSK; Chaffee A; Zhang L
    Waste Manag; 2024 Apr; 179():99-109. PubMed ID: 38471253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis.
    Uzun BB; Yaman E
    Waste Manag Res; 2014 Oct; 32(10):961-70. PubMed ID: 25030024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of low-energy-capable electron ionization with high-resolution mass spectrometer for characterization of pyrolysis oils from plastics.
    Burdová H; Pilnaj D; Kuráň P
    J Chromatogr A; 2023 Nov; 1711():464445. PubMed ID: 37857155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.
    Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G
    Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields.
    Tan V; De Girolamo A; Hosseini T; Alhesan JA; Zhang L
    Waste Manag; 2018 Jun; 76():516-527. PubMed ID: 29555115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Synergistic Interactions between Polystyrene and Polyethylene.
    Luong T; Wang Y; Parmar K; Jiang C; Wang Q; Hu J
    Chempluschem; 2023 Jun; 88(6):e202300210. PubMed ID: 37302980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins.
    Rotliwala YC; Parikh PA
    Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor.
    Bhatt KP; Patel S; Upadhyay DS; Patel RN
    J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of hazardous plastic wastes into useful chemical products.
    Siddiqui MN
    J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-pyrolysis of neem wood bark and low-density polyethylene: influence of plastic on pyrolysis product distribution and bio-oil characterization.
    Kaushik VS; Dhanalakshmi CS; Madhu P; Tamilselvam P
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88213-88223. PubMed ID: 35831654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic upcycling of waste plastics over nanocellulose derived biochar catalyst for the coupling harvest of hydrogen and liquid fuels.
    Wang C; Lei H; Kong X; Zou R; Qian M; Zhao Y; Mateo W
    Sci Total Environ; 2021 Jul; 779():146463. PubMed ID: 34030226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS.
    Hernandez-Fernandez J; Lambis H; Reyes RV
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste.
    Wan Mahari WA; Awang S; Zahariman NAZ; Peng W; Man M; Park YK; Lee J; Sonne C; Lam SS
    J Hazard Mater; 2022 Feb; 423(Pt A):127096. PubMed ID: 34523477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of low-oxygen oil via catalytic co-pyrolysis of biogas residue and plastics by ZSM-5.
    Wang W; Sun K; Gong P; Huang Q
    Environ Technol; 2023 May; 44(13):1947-1958. PubMed ID: 34890531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene.
    Kiran Ciliz N; Ekinci E; Snape CE
    Waste Manag; 2004; 24(2):173-81. PubMed ID: 14761756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11.
    Lee N; Joo J; Lin KA; Lee J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.