BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38471342)

  • 41. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.
    Vilardi G; Mpouras T; Dermatas D; Verdone N; Polydera A; Di Palma L
    Chemosphere; 2018 Jun; 201():716-729. PubMed ID: 29547860
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of nickel-iron layered double hydroxide via topochemical approach: Enhanced surface charge density for rapid hexavalent chromium removal.
    Huang S; Ouyang T; Chen J; Wang Z; Liao S; Li X; Liu ZQ
    J Colloid Interface Sci; 2022 Jan; 605():602-612. PubMed ID: 34343733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater.
    Ren T; He P; Niu W; Wu Y; Ai L; Gou X
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):155-62. PubMed ID: 22392693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review.
    Jiang Y; Liu Z; Zeng G; Liu Y; Shao B; Li Z; Liu Y; Zhang W; He Q
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6158-6174. PubMed ID: 29307070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles.
    Yu Q; Guo J; Muhammad Y; Li Q; Lu Z; Yun J; Liang Y
    J Environ Manage; 2020 Dec; 276():111245. PubMed ID: 32862116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes.
    Lv X; Xu J; Jiang G; Xu X
    Chemosphere; 2011 Nov; 85(7):1204-9. PubMed ID: 22000744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitigating the Health Effects of Aqueous Cr(VI) with Iron-Modified Biochar.
    Zheng Z; Duan X
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater.
    Liu T; Zhao L; Sun D; Tan X
    J Hazard Mater; 2010 Dec; 184(1-3):724-730. PubMed ID: 20855161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural pyrite improved steel slag towards environmentally sustainable chromium reclamation from hexavalent chromium-containing wastewater.
    Shu Y; Ji B; Li Y; Zhang W; Zhang H; Zhang J
    Chemosphere; 2021 Nov; 282():130974. PubMed ID: 34107422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation.
    Ou JH; Sheu YT; Tsang DCW; Sun YJ; Kao CM
    Chemosphere; 2020 Oct; 256():127158. PubMed ID: 32470741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar.
    Chen ZL; Zhang YN; Guo JZ; Chen L; Li B
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94185-94194. PubMed ID: 37526823
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct chromium removal mechanisms by iron-modified biochar under varying pH: Role of iron and chromium speciation.
    Liu L; Sun P; Chen Y; Li X; Zheng X
    Chemosphere; 2023 Aug; 331():138796. PubMed ID: 37142103
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Cr(VI) removal from simulated electroplating rinse wastewater by amino-functionalized vermiculite-supported nanoscale zero-valent iron.
    Zhao R; Zhou Z; Zhao X; Jing G
    Chemosphere; 2019 Mar; 218():458-467. PubMed ID: 30485829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unveiling the role of biochar in simultaneous removal of hexavalent chromium and trichloroethylene by biochar supported nanoscale zero-valent iron.
    Qian L; Long Y; Li H; Wei Z; Liang C; Liu R; Chen M
    Sci Total Environ; 2023 Sep; 889():164243. PubMed ID: 37201809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel efficient capture of hexavalent chromium by polyethyleneimine/amyloid fibrils/polyvinyl alcohol aerogel beads: Functional design, applicability, and mechanisms.
    Zhang Y; Wen J; Zhou Y; Wang J; Cheng W
    J Hazard Mater; 2023 Sep; 458():132017. PubMed ID: 37429193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate.
    Qu G; Chu R; Wang H; Wang T; Zhang Z; Qiang H; Liang D; Hu S
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40826-40836. PubMed ID: 32677009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal efficiency of hexavalent chromium from wastewater using starch-stabilized nanoscale zero-valent iron.
    Chen H; Xie H; Zhou J; Tao Y; Zhang Y; Zheng Q; Wang Y
    Water Sci Technol; 2019 Sep; 80(6):1076-1084. PubMed ID: 31799951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater.
    Maamoun I; Eljamal O; Falyouna O; Eljamal R; Sugihara Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110773. PubMed ID: 32464445
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of Iron-Containing Biochar by One-Step Ball Milling for Cr(VI) and Tetracycline Removal from Wastewater.
    Jiang F; Wei C; Yu Z; Ji L; Liu M; Cao Q; Wu L; Li F
    Langmuir; 2023 Dec; 39(51):18958-18970. PubMed ID: 38095154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms.
    Cui YW; Li J; Du ZF; Peng YZ
    PLoS One; 2016; 11(9):e0161780. PubMed ID: 27658113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.