These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38471529)

  • 1. Structures and activation mechanism of the Gabija anti-phage system.
    Li J; Cheng R; Wang Z; Yuan W; Xiao J; Zhao X; Du X; Xia S; Wang L; Zhu B; Wang L
    Nature; 2024 May; 629(8011):467-473. PubMed ID: 38471529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of Gabija anti-phage supramolecular assemblies.
    Yang XY; Shen Z; Xie J; Greenwald J; Marathe I; Lin Q; Xie WJ; Wysocki VH; Fu TM
    Nat Struct Mol Biol; 2024 Aug; 31(8):1243-1250. PubMed ID: 38627580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and biochemical insights into the mechanism of the Gabija bacterial immunity system.
    Huo Y; Kong L; Zhang Y; Xiao M; Du K; Xu S; Yan X; Ma J; Wei T
    Nat Commun; 2024 Jan; 15(1):836. PubMed ID: 38282040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional investigation of GajB protein in Gabija anti-phage defense.
    Oh H; Koo J; An SY; Hong SH; Suh JY; Bae E
    Nucleic Acids Res; 2023 Nov; 51(21):11941-11951. PubMed ID: 37897358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prokaryotic Gabija complex senses and executes nucleotide depletion and DNA cleavage for antiviral defense.
    Cheng R; Huang F; Lu X; Yan Y; Yu B; Wang X; Zhu B
    Cell Host Microbe; 2023 Aug; 31(8):1331-1344.e5. PubMed ID: 37480847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of Gabija anti-phage defence and viral immune evasion.
    Antine SP; Johnson AG; Mooney SE; Leavitt A; Mayer ML; Yirmiya E; Amitai G; Sorek R; Kranzusch PJ
    Nature; 2024 Jan; 625(7994):360-365. PubMed ID: 37992757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nucleotide-sensing endonuclease from the Gabija bacterial defense system.
    Cheng R; Huang F; Wu H; Lu X; Yan Y; Yu B; Wang X; Zhu B
    Nucleic Acids Res; 2021 May; 49(9):5216-5229. PubMed ID: 33885789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular architecture of a multifunctional MCM complex.
    Sanchez-Berrondo J; Mesa P; Ibarra A; Martínez-Jiménez MI; Blanco L; Méndez J; Boskovic J; Montoya G
    Nucleic Acids Res; 2012 Feb; 40(3):1366-80. PubMed ID: 21984415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional insights into the T-even type bacteriophage topoisomerase II.
    Xin Y; Xian R; Yang Y; Cong J; Rao Z; Li X; Chen Y
    Nat Commun; 2024 Oct; 15(1):8719. PubMed ID: 39379365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overall Structures of Mycobacterium tuberculosis DNA Gyrase Reveal the Role of a Corynebacteriales GyrB-Specific Insert in ATPase Activity.
    Petrella S; Capton E; Raynal B; Giffard C; Thureau A; Bonneté F; Alzari PM; Aubry A; Mayer C
    Structure; 2019 Apr; 27(4):579-589.e5. PubMed ID: 30744994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion.
    Huang J; Zhu K; Gao Y; Ye F; Li Z; Ge Y; Liu S; Yang J; Gao A
    Nat Commun; 2024 May; 15(1):3954. PubMed ID: 38729958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and activation mechanism of the bacterial PARIS defence system.
    Deep A; Liang Q; Enustun E; Pogliano J; Corbett KD
    Nature; 2024 Oct; 634(8033):432-439. PubMed ID: 39112702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase.
    Fodje MN; Hansson A; Hansson M; Olsen JG; Gough S; Willows RD; Al-Karadaghi S
    J Mol Biol; 2001 Aug; 311(1):111-22. PubMed ID: 11469861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB.
    Lee S; Choi JM; Tsai FT
    Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins.
    Aravind L; Leipe DD; Koonin EV
    Nucleic Acids Res; 1998 Sep; 26(18):4205-13. PubMed ID: 9722641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus.
    Collins RF; Hassan D; Karuppiah V; Thistlethwaite A; Derrick JP
    Biochem J; 2013 Mar; 450(2):417-25. PubMed ID: 23252471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biochemically active MCM-like helicase in Bacillus cereus.
    Samuels M; Gulati G; Shin JH; Opara R; McSweeney E; Sekedat M; Long S; Kelman Z; Jeruzalmi D
    Nucleic Acids Res; 2009 Jul; 37(13):4441-52. PubMed ID: 19474351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion.
    Agrawal A; Roué M; Spitzfaden C; Petrella S; Aubry A; Hann M; Bax B; Mayer C
    Biochem J; 2013 Dec; 456(2):263-73. PubMed ID: 24015710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus.
    Fukui K; Iino H; Baba S; Kumasaka T; Kuramitsu S; Yano T
    Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1178-1187. PubMed ID: 28668638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.