These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 38471600)

  • 1. Using synthetic genome readers/regulators to interrogate chromatin processes: A brief review.
    Philips SJ; Danda A; Ansari AZ
    Methods; 2024 May; 225():20-27. PubMed ID: 38471600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic genome readers target clustered binding sites across diverse chromatin states.
    Erwin GS; Grieshop MP; Bhimsaria D; Do TJ; Rodríguez-Martínez JA; Mehta C; Khanna K; Swanson SA; Stewart R; Thomson JA; Ramanathan P; Ansari AZ
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7418-E7427. PubMed ID: 27830652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Chromatin Remodeling Proteins for Precise Nucleosome Positioning.
    Donovan DA; Crandall JG; Banks OGB; Jensvold ZD; Truong V; Dinwiddie D; McKnight LE; McKnight JN
    Cell Rep; 2019 Nov; 29(8):2520-2535.e4. PubMed ID: 31747617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping polyamide-DNA interactions in human cells reveals a new design strategy for effective targeting of genomic sites.
    Erwin GS; Bhimsaria D; Eguchi A; Ansari AZ
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10124-8. PubMed ID: 25066383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-Selective BET Ligands Yield Next-Generation Synthetic Genome Readers/Regulators with Nonidentical Cellular Functions.
    Mohammed A; Waddell MB; Sutkeviciute I; Danda A; Philips SJ; Lang W; Slavish PJ; Kietlinska SJ; Kaulage M; Sourav D; Ansari AZ
    J Am Chem Soc; 2023 Nov; ():. PubMed ID: 37923569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakly positioned nucleosomes enhance the transcriptional competency of chromatin.
    Belch Y; Yang J; Liu Y; Malkaram SA; Liu R; Riethoven JJ; Ladunga I
    PLoS One; 2010 Sep; 5(9):e12984. PubMed ID: 20886052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transition of the nucleosome during chromatin remodeling and transcription.
    Kobayashi W; Kurumizaka H
    Curr Opin Struct Biol; 2019 Dec; 59():107-114. PubMed ID: 31473439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide Mapping of Drug-DNA Interactions in Cells with COSMIC (Crosslinking of Small Molecules to Isolate Chromatin).
    Erwin GS; Grieshop MP; Bhimsaria D; Eguchi A; Rodríguez-Martínez JA; Ansari AZ
    J Vis Exp; 2016 Jan; (107):e53510. PubMed ID: 26863565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of promoter nucleosomes by disassembly rather than sliding in vivo.
    Boeger H; Griesenbeck J; Strattan JS; Kornberg RD
    Mol Cell; 2004 Jun; 14(5):667-73. PubMed ID: 15175161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC.
    Manelyte L; Strohner R; Gross T; Längst G
    PLoS Genet; 2014 Mar; 10(3):e1004157. PubMed ID: 24651573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription through the nucleosome.
    Kujirai T; Kurumizaka H
    Curr Opin Struct Biol; 2020 Apr; 61():42-49. PubMed ID: 31790919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.
    Kwon SY; Grisan V; Jang B; Herbert J; Badenhorst P
    PLoS Genet; 2016 Apr; 12(4):e1005969. PubMed ID: 27046080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context.
    Ha M; Hong S; Li WH
    Bioinformatics; 2013 May; 29(9):1199-205. PubMed ID: 23511541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear Factor I genomic binding associates with chromatin boundaries.
    Pjanic M; Schmid CD; Gaussin A; Ambrosini G; Adamcik J; Pjanic P; Plasari G; Kerschgens J; Dietler G; Bucher P; Mermod N
    BMC Genomics; 2013 Feb; 14():99. PubMed ID: 23402308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin remodelling at promoters suppresses antisense transcription.
    Whitehouse I; Rando OJ; Delrow J; Tsukiyama T
    Nature; 2007 Dec; 450(7172):1031-5. PubMed ID: 18075583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking stochastic fluctuations in chromatin structure and gene expression.
    Brown CR; Mao C; Falkovskaia E; Jurica MS; Boeger H
    PLoS Biol; 2013; 11(8):e1001621. PubMed ID: 23940458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes.
    Muñoz-Viana R; Wildhaber T; Trejo-Arellano MS; Mozgová I; Hennig L
    Plant J; 2017 Nov; 92(3):363-374. PubMed ID: 28786541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.
    Field Y; Kaplan N; Fondufe-Mittendorf Y; Moore IK; Sharon E; Lubling Y; Widom J; Segal E
    PLoS Comput Biol; 2008 Nov; 4(11):e1000216. PubMed ID: 18989395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic methods in profiling DNA accessibility and factor localization.
    Klein DC; Hainer SJ
    Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.