BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38471604)

  • 21. Textile Waste Fiber Regeneration via a Green Chemistry Approach: A Molecular Strategy for Sustainable Fashion.
    Sun X; Wang X; Sun F; Tian M; Qu L; Perry P; Owens H; Liu X
    Adv Mater; 2021 Dec; 33(48):e2105174. PubMed ID: 34561908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel structural design of cellulose-based conductive composite fibers for wearable e-textiles.
    Liu W; Liu H; Zhao Z; Liang D; Zhong WH; Zhang J
    Carbohydr Polym; 2023 Dec; 321():121308. PubMed ID: 37739538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring.
    Pan H; Chen G; Chen Y; Di Carlo A; Mayer MA; Shen S; Chen C; Li W; Subramaniam S; Huang H; Tai H; Jiang Y; Xie G; Su Y; Chen J
    Biosens Bioelectron; 2023 Feb; 222():114999. PubMed ID: 36521206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies of Recovery and Organic Recycling Used in Textile Waste Management.
    Wojnowska-Baryła I; Bernat K; Zaborowska M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway.
    Teng Y; Yu G; Fu Y; Yin C
    Int J Biol Macromol; 2018 Feb; 107(Pt A):383-392. PubMed ID: 28882759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.
    Sun X; Lu C; Zhang W; Tian D; Zhang X
    Carbohydr Polym; 2013 Oct; 98(1):405-11. PubMed ID: 23987361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.
    Chen J; Guan Y; Wang K; Zhang X; Xu F; Sun R
    Carbohydr Polym; 2015 Sep; 128():147-53. PubMed ID: 26005150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication.
    Xia G; Zhou Q; Xu Z; Zhang J; Zhang J; Wang J; You J; Wang Y; Nawaz H
    Carbohydr Polym; 2021 Dec; 273():118569. PubMed ID: 34560980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers.
    Wang B; Nie Y; Kang Z; Liu X
    Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li A; Li S; Liu M; Luo S; Zhang D
    Int J Biol Macromol; 2019 May; 129():878-886. PubMed ID: 30735776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical properties and physicochemical characteristics of cotton fibers during combing process.
    Shi Y; Geng L; Fan P; Yuan Y; Zhao J; Zhang Y
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129791. PubMed ID: 38325253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.
    Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ
    Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
    Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y
    Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS.
    Liu S; Cui R; Ma Y; Yu Q; Kannegulla A; Wu B; Fan H; Wang AX; Kong X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117664. PubMed ID: 31670224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications.
    Wang C; Liao Y; Yu HY; Dong Y; Yao J
    Carbohydr Polym; 2023 Nov; 319():121175. PubMed ID: 37567715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics.
    Wang C; Li Y; Yu HY; Abdalkarim SYH; Zhou J; Yao J; Zhang L
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40953-40963. PubMed ID: 34406736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recycled PET/PA6 Fibers from Waste Textile with Improved Hydrophilicity by In-Situ Reaction-Induced Capacity Enhancement.
    Luo LB; Chen R; Lian YX; Wu WJ; Zhang JH; Fu CX; Sun XL; Xiao LR
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.