These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38471604)

  • 41. Recycled PET/PA6 Fibers from Waste Textile with Improved Hydrophilicity by In-Situ Reaction-Induced Capacity Enhancement.
    Luo LB; Chen R; Lian YX; Wu WJ; Zhang JH; Fu CX; Sun XL; Xiao LR
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674974
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Green Production of Regenerated Cellulose/Boron Nitride Nanosheet Textiles for Static and Dynamic Personal Cooling.
    Wu K; Yu L; Lei C; Huang J; Liu D; Liu Y; Xie Y; Chen F; Fu Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40685-40693. PubMed ID: 31599152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.
    Shen F; Xiao W; Lin L; Yang G; Zhang Y; Deng S
    Bioresour Technol; 2013 Feb; 130():248-55. PubMed ID: 23313669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ethanol production from cotton-based waste textiles.
    Jeihanipour A; Taherzadeh MJ
    Bioresour Technol; 2009 Jan; 100(2):1007-10. PubMed ID: 18723342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile preparation and performance study of antibacterial regenerated cellulose carbamate fiber based on N-halamine.
    Hu J; Li R; Zhu S; Zhang G; Zhu P
    Cellulose (Lond); 2021; 28(8):4991-5003. PubMed ID: 33846673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical mapping of xyloglucan distribution and cellulose crystallinity in cotton textiles reveals novel enzymatic targets to improve clothing longevity.
    Kelly MR; Lant NJ; Berlinguer-Palmini R; Burgess JG
    Carbohydr Polym; 2024 Sep; 339():122243. PubMed ID: 38823912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progress in recycling and valorization of waste silk.
    Lu L; Fan W; Ge S; Liew RK; Shi Y; Dou H; Wang S; Lam SS
    Sci Total Environ; 2022 Jul; 830():154812. PubMed ID: 35341869
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.
    Sun X; Lu C; Liu Y; Zhang W; Zhang X
    Carbohydr Polym; 2014 Jan; 101():642-9. PubMed ID: 24299821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid.
    Xue Y; Li W; Yang G; Lin Z; Qi L; Zhu P; Yu J; Chen J
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a novel cellulose/duck feather composite fibre regenerated in ionic liquid.
    De Silva R; Wang X; Byrne N
    Carbohydr Polym; 2016 Nov; 153():115-123. PubMed ID: 27561478
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy.
    Kar S; Santra B; Kumar S; Ghosh S; Majumdar S
    Environ Pollut; 2022 Nov; 312():120056. PubMed ID: 36049578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities.
    Noorian SA; Hemmatinejad N; Navarro JAR
    Int J Biol Macromol; 2020 Jul; 154():1215-1226. PubMed ID: 31730954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regenerated bacterial cellulose fibres.
    Soares Silva FAG; Meister F; Dourado F; Gama M
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127310. PubMed ID: 37813214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials.
    Costa C; Viana A; Silva C; Marques EF; Azoia NG
    Waste Manag; 2022 Nov; 153():99-109. PubMed ID: 36067549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process.
    Tu H; Li X; Liu Y; Luo L; Duan B; Zhang R
    Carbohydr Polym; 2022 Nov; 296():119942. PubMed ID: 36088027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multifunctional finishing of cotton with 3,3',4,4'-benzophenone tetracarboxylic acid: functional performance.
    Hou A; Sun G
    Carbohydr Polym; 2013 Jul; 96(2):435-9. PubMed ID: 23768584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of Dry-Jet Wet Spinning of Regenerated Cellulose Fibers Using [mTBDH][OAc] as a Solvent.
    Fang W; Lim EY; Nieminen KL; Sixta H
    ACS Omega; 2023 Sep; 8(37):34103-34110. PubMed ID: 37744829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Research on and the determination of artificial cellulose fibers in cotton wool].
    BRUNELLO G
    Boll Chim Farm; 1960 Jul; 99():460-3. PubMed ID: 13805296
    [No Abstract]   [Full Text] [Related]  

  • 59. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration.
    Ma Z; Pan G; Xu H; Huang Y; Yang Y
    Carbohydr Polym; 2015 Jun; 124():50-6. PubMed ID: 25839793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atmospheric microfibers dominated by natural and regenerated cellulosic fibers: Explanations from the textile engineering perspective.
    Liu J; Zhu B; An L; Ding J; Xu Y
    Environ Pollut; 2023 Jan; 317():120771. PubMed ID: 36455767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.