These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38471818)

  • 1. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CRISPR effector Cam1 mediates membrane depolarization for phage defence.
    Baca CF; Yu Y; Rostøl JT; Majumder P; Patel DJ; Marraffini LA
    Nature; 2024 Jan; 625(7996):797-804. PubMed ID: 38200316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity.
    Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF
    Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding.
    Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q
    Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence.
    Grüschow S; Athukoralage JS; Graham S; Hoogeboom T; White MF
    Nucleic Acids Res; 2019 Sep; 47(17):9259-9270. PubMed ID: 31392987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families.
    Hoikkala V; Graham S; White MF
    Nucleic Acids Res; 2024 Jul; 52(12):7129-7141. PubMed ID: 38808661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate.
    Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF
    Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems.
    Xia P; Dutta A; Gupta K; Batish M; Parashar V
    J Biol Chem; 2022 Feb; 298(2):101591. PubMed ID: 35038453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiviral signalling by a cyclic nucleotide activated CRISPR protease.
    Rouillon C; Schneberger N; Chi H; Blumenstock K; Da Vela S; Ackermann K; Moecking J; Peter MF; Boenigk W; Seifert R; Bode BE; Schmid-Burgk JL; Svergun D; Geyer M; White MF; Hagelueken G
    Nature; 2023 Feb; 614(7946):168-174. PubMed ID: 36423657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.
    McMahon SA; Zhu W; Graham S; Rambo R; White MF; Gloster TM
    Nat Commun; 2020 Jan; 11(1):500. PubMed ID: 31980625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling.
    Athukoralage JS; Graham S; Rouillon C; Grüschow S; Czekster CM; White MF
    Elife; 2020 Apr; 9():. PubMed ID: 32338598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator.
    Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF
    J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector.
    Grüschow S; Adamson CS; White MF
    Nucleic Acids Res; 2021 Dec; 49(22):13122-13134. PubMed ID: 34871408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.