These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38472088)

  • 21. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli.
    Osire T; Yang T; Xu M; Zhang X; Long M; Ngon NKA; Rao Z
    Int J Biol Macromol; 2021 Feb; 169():8-17. PubMed ID: 33301846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced thermal and alkaline stability of L-lysine decarboxylase CadA by combining directed evolution and computation-guided virtual screening.
    Xi Y; Ye L; Yu H
    Bioresour Bioprocess; 2022 Mar; 9(1):24. PubMed ID: 38647777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling the fermentation and membrane separation process for polyamides monomer cadaverine production from feedstock lysine.
    Luo R; Qin Z; Zhou D; Wang D; Hu G; Su Z; Zhang S
    Eng Life Sci; 2021 Oct; 21(10):623-629. PubMed ID: 34690633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.
    Tateno T; Okada Y; Tsuchidate T; Tanaka T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):115-21. PubMed ID: 18989633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadaverine Production From L-Lysine With Chitin-Binding Protein-Mediated Lysine Decarboxylase Immobilization.
    Zhou N; Zhang A; Wei G; Yang S; Xu S; Chen K; Ouyang P
    Front Bioeng Biotechnol; 2020; 8():103. PubMed ID: 32195228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel co-production of cadaverine and succinic acid based on a thermal switch system in recombinant Escherichia coli.
    Gao S; Lu J; Wang T; Xu S; Wang X; Chen K; Ouyang P
    Microb Cell Fact; 2022 Nov; 21(1):248. PubMed ID: 36419122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli.
    Ting WW; Ng IS
    J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine.
    Qian ZG; Xia XX; Lee SY
    Biotechnol Bioeng; 2011 Jan; 108(1):93-103. PubMed ID: 20812259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
    Mimitsuka T; Sawai H; Hatsu M; Yamada K
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2130-5. PubMed ID: 17895539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-Tuning Pyridoxal 5'-Phosphate Synthesis in
    Liu C; Gao C; Song L; Li X; Chen X; Wu J; Song W; Wei W; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1820-1830. PubMed ID: 38767944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering synthetic microbial consortium for cadaverine biosynthesis from glycerol.
    Liu S; Mi J; Song K; Qi H; Zhang L
    Biotechnol Lett; 2022 Dec; 44(12):1389-1400. PubMed ID: 36203106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient and scalable synthesis of 1,5-diamino-2-hydroxy-pentane from L-lysine via cascade catalysis using engineered Escherichia coli.
    Li Y; Zhang A; Hu S; Chen K; Ouyang P
    Microb Cell Fact; 2022 Jul; 21(1):142. PubMed ID: 35842631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ameliorating end-product inhibition to improve cadaverine production in engineered
    Wang X; Guo X; Wang J; Li H; He F; Xu S; Chen K; Ouyang P
    Synth Syst Biotechnol; 2021 Dec; 6(4):243-253. PubMed ID: 34584992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Process for Cadaverine Bio-Production Using a Consortium of Two Engineered
    Wang J; Lu X; Ying H; Ma W; Xu S; Wang X; Chen K; Ouyang P
    Front Microbiol; 2018; 9():1312. PubMed ID: 29971056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An assay for measuring the activity of Escherichia coli inducible lysine decarboxylase.
    Kanjee U; Houry WA
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21494223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Molecular engineering and immobilization of lysine decarboxylase for synthesis of 1, 5-diaminopentane: a review].
    Liu S; Qi H
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4403-4419. PubMed ID: 36593185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering the Cad pathway in Escherichia coli to produce glutarate from L-lysine.
    Wang J; Gao C; Chen X; Liu L
    Appl Microbiol Biotechnol; 2021 May; 105(9):3587-3599. PubMed ID: 33907891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains.
    Sri Wahyu Effendi S; Lin JY; Ng IS
    Bioresour Technol; 2022 Nov; 363():127980. PubMed ID: 36137445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway.
    Cen X; Liu Y; Zhu F; Liu D; Chen Z
    Metab Eng; 2022 Nov; 74():168-177. PubMed ID: 36328298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli.
    Soksawatmaekhin W; Kuraishi A; Sakata K; Kashiwagi K; Igarashi K
    Mol Microbiol; 2004 Mar; 51(5):1401-12. PubMed ID: 14982633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.