These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38472088)

  • 41. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase.
    Tabor H; Hafner EW; Tabor CW
    J Bacteriol; 1980 Dec; 144(3):952-6. PubMed ID: 7002915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production.
    Kloss R; Limberg MH; Mackfeld U; Hahn D; Grünberger A; Jäger VD; Krauss U; Oldiges M; Pohl M
    Sci Rep; 2018 Apr; 8(1):5856. PubMed ID: 29643457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing catalytic stability and cadaverine tolerance by whole-cell immobilization and the addition of cell protectant during cadaverine production.
    Wei G; Ma W; Zhang A; Cao X; Shen J; Li Y; Chen K; Ouyang P
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7837-7847. PubMed ID: 29998412
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum.
    Oh YH; Choi JW; Kim EY; Song BK; Jeong KJ; Park K; Kim IK; Woo HM; Lee SH; Park SJ
    Appl Biochem Biotechnol; 2015 Aug; 176(7):2065-75. PubMed ID: 26047931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systematic Engineering of
    Dookeran ZA; Nielsen DR
    ACS Synth Biol; 2021 Dec; 10(12):3561-3575. PubMed ID: 34851612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.
    Adkins J; Jordan J; Nielsen DR
    Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis.
    Hong EY; Kim JY; Upadhyay R; Park BJ; Lee JM; Kim BG
    J Biotechnol; 2018 Sep; 281():175-182. PubMed ID: 30021117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.
    Park SJ; Oh YH; Noh W; Kim HY; Shin JH; Lee EG; Lee S; David Y; Baylon MG; Song BK; Jegal J; Lee SY; Lee SH
    Biotechnol J; 2014 Oct; 9(10):1322-8. PubMed ID: 25124937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
    Li M; Li D; Huang Y; Liu M; Wang H; Tang Q; Lu F
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):701-9. PubMed ID: 24510022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cadaverine biosynthesis contributes to decreased Escherichia coli susceptibility to antibiotics.
    Akhova A; Nesterova L; Shumkov M; Tkachenko A
    Res Microbiol; 2021; 172(7-8):103881. PubMed ID: 34543694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-step biosynthesis of α-keto-γ-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris.
    Hossain GS; Li J; Shin HD; Du G; Wang M; Liu L; Chen J
    PLoS One; 2014; 9(12):e114291. PubMed ID: 25531756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability.
    Samartzidou H; Delcour AH
    J Bacteriol; 1999 Feb; 181(3):791-8. PubMed ID: 9922241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through Whole-Cell Biotransformation in Escherichia coli.
    Hsieh SC; Wang JH; Lai YC; Su CY; Lee KT
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution.
    Sagong HY; Kim KJ
    PLoS One; 2017; 12(1):e0170163. PubMed ID: 28095457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH.
    Meng SY; Bennett GN
    J Bacteriol; 1992 Apr; 174(8):2659-69. PubMed ID: 1556085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic redesign of
    Kwak DH; Lim HG; Yang J; Seo SW; Jung GY
    Biotechnol Biofuels; 2017; 10():20. PubMed ID: 28127401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-component lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a.
    Romano A; Trip H; Lolkema JS; Lucas PM
    J Bacteriol; 2013 Mar; 195(6):1249-54. PubMed ID: 23316036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A direct enzymatic evaluation platform (DEEP) to fine-tuning pyridoxal 5'-phosphate-dependent proteins for cadaverine production.
    Xue C; Ng IS
    Biotechnol Bioeng; 2023 Jan; 120(1):272-283. PubMed ID: 36271696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli.
    Ikeda N; Miyamoto M; Adachi N; Nakano M; Tanaka T; Kondo A
    AMB Express; 2013 Nov; 3(1):67. PubMed ID: 24206923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.