BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38472187)

  • 1. Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles.
    Dutkiewicz A; Boulila S; Dietmar Müller R
    Nat Commun; 2024 Mar; 15(1):1998. PubMed ID: 38472187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.
    Crampton JS; Meyers SR; Cooper RA; Sadler PM; Foote M; Harte D
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5686-5691. PubMed ID: 29760070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between Grand cycles and Events in Earth's climate during the past 115 million years.
    Boulila S
    Sci Rep; 2019 Jan; 9(1):327. PubMed ID: 30674928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate control on banded iron formations linked to orbital eccentricity.
    Lantink ML; Davies JHFL; Mason PRD; Schaltegger U; Hilgen FJ
    Nat Geosci; 2019 May; 12(5):369-374. PubMed ID: 31105765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.
    Martinez M; Dera G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12604-9. PubMed ID: 26417080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity.
    Rial JA
    Science; 1999 Jul; 285(5427):564-8. PubMed ID: 10417382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar System chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy.
    Zeebe RE; Lourens LJ
    Science; 2019 Aug; 365(6456):926-929. PubMed ID: 31467222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modes of Pangean lake level cyclicity driven by astronomical climate pacing modulated by continental position and
    Landwehrs J; Feulner G; Willeit M; Petri S; Sames B; Wagreich M; Whiteside JH; Olsen PE
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2203818119. PubMed ID: 36343239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Astronomical pacing of late Palaeocene to early Eocene global warming events.
    Lourens LJ; Sluijs A; Kroon D; Zachos JC; Thomas E; Röhl U; Bowles J; Raffi I
    Nature; 2005 Jun; 435(7045):1083-7. PubMed ID: 15944716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planetary chaos and inverted climate phasing in the Late Triassic of Greenland.
    Mau M; Kent DV; Clemmensen LB
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2118696119. PubMed ID: 35452307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks.
    Vervoort P; Kirtland Turner S; Rochholz F; Ridgwell A
    Paleoceanogr Paleoclimatol; 2021 Oct; 36(10):e2020PA004090. PubMed ID: 35874321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles.
    Rutherford S; D'Hondt S
    Nature; 2000 Nov; 408(6808):72-5. PubMed ID: 11081508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.
    Sexton PF; Norris RD; Wilson PA; Pälike H; Westerhold T; Röhl U; Bolton CT; Gibbs S
    Nature; 2011 Mar; 471(7338):349-52. PubMed ID: 21412336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-period astronomical forcing of mammal turnover.
    van Dam JA; Abdul Aziz H; Alvarez Sierra MA; Hilgen FJ; van den Hoek Ostende LW; Lourens LJ; Mein P; van der Meulen AJ; Pelaez-Campomanes P
    Nature; 2006 Oct; 443(7112):687-91. PubMed ID: 17036002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate system asymmetries drive eccentricity pacing of hydroclimate during the early Eocene greenhouse.
    Walters AP; Tierney JE; Zhu J; Meyers SR; Graves K; Carroll AR
    Sci Adv; 2023 Aug; 9(31):eadg8022. PubMed ID: 37540746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amplitude and origin of sea-level variability during the Pliocene epoch.
    Grant GR; Naish TR; Dunbar GB; Stocchi P; Kominz MA; Kamp PJJ; Tapia CA; McKay RM; Levy RH; Patterson MO
    Nature; 2019 Oct; 574(7777):237-241. PubMed ID: 31578526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paleocene/Eocene carbon feedbacks triggered by volcanic activity.
    Kender S; Bogus K; Pedersen GK; Dybkjær K; Mather TA; Mariani E; Ridgwell A; Riding JB; Wagner T; Hesselbo SP; Leng MJ
    Nat Commun; 2021 Aug; 12(1):5186. PubMed ID: 34465785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch.
    Liu Z; Herbert TD
    Nature; 2004 Feb; 427(6976):720-3. PubMed ID: 14973481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Earth's interior dynamics drive marine fossil diversity cycles of tens of millions of years.
    Boulila S; Peters SE; Müller RD; Haq BU; Hara N
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2221149120. PubMed ID: 37428908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain.
    Li M; Bralower TJ; Kump LR; Self-Trail JM; Zachos JC; Rush WD; Robinson MM
    Nat Commun; 2022 Sep; 13(1):5618. PubMed ID: 36153313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.