These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38472240)

  • 41. Deletion of
    Powell AM; Edwards NA; Hunter H; Kiser P; Watson AJ; Cumming RC; Betts DH
    Stem Cells Dev; 2023 Aug; 32(15-16):434-449. PubMed ID: 37183401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9.
    Yang Y; Zhang X; Yi L; Hou Z; Chen J; Kou X; Zhao Y; Wang H; Sun XF; Jiang C; Wang Y; Gao S
    Stem Cells Transl Med; 2016 Jan; 5(1):8-19. PubMed ID: 26676643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cell fate: senescence or quiescence.
    Terzi MY; Izmirli M; Gogebakan B
    Mol Biol Rep; 2016 Nov; 43(11):1213-1220. PubMed ID: 27558094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.
    Mohammad K; Dakik P; Medkour Y; Mitrofanova D; Titorenko VI
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31052375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches.
    So WK; Cheung TH
    Methods Mol Biol; 2018; 1686():1-25. PubMed ID: 29030809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence.
    Cho IJ; Lui PP; Obajdin J; Riccio F; Stroukov W; Willis TL; Spagnoli F; Watt FM
    Stem Cell Reports; 2019 Jun; 12(6):1190-1200. PubMed ID: 31189093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of the efficacy of transplantation of bone marrow-derived mesenchymal stem cells and unrestricted somatic stem cells on outcome after acute myocardial infarction.
    Flynn A; Chen X; O'Connell E; O'Brien T
    Stem Cell Res Ther; 2012 Sep; 3(5):36. PubMed ID: 22974654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishment and Characterization of Naïve Pluripotency in Human Embryonic Stem Cells.
    Warrier S; Popovic M; Van der Jeught M; Heindryckx B
    Methods Mol Biol; 2016; 1516():13-46. PubMed ID: 27044048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm.
    Linneberg-Agerholm M; Wong YF; Romero Herrera JA; Monteiro RS; Anderson KGV; Brickman JM
    Development; 2019 Dec; 146(24):. PubMed ID: 31740534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stem cell quiescence.
    Li L; Bhatia R
    Clin Cancer Res; 2011 Aug; 17(15):4936-41. PubMed ID: 21593194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel Insights into Adult and Cancer Stem Cell Biology.
    Bhartiya D; Patel H; Ganguly R; Shaikh A; Shukla Y; Sharma D; Singh P
    Stem Cells Dev; 2018 Nov; 27(22):1527-1539. PubMed ID: 30051749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of cell-cell adhesion complexes in embryonic stem cell biology.
    Pieters T; van Roy F
    J Cell Sci; 2014 Jun; 127(Pt 12):2603-13. PubMed ID: 24931943
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naïve pluripotent stem cells in vivo and in vitro.
    Kraunsoe S; Azami T; Pei Y; Martello G; Jones K; Boroviak T; Nichols J
    Biol Open; 2023 Jan; 12(1):. PubMed ID: 36504370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells.
    Hacohen Lev-Ran A; Seger R
    Stem Cell Reports; 2023 Jan; 18(1):305-318. PubMed ID: 36563690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The transcription factor LEF1 interacts with NFIX and switches isoforms during adult hippocampal neural stem cell quiescence.
    García-Corzo L; Calatayud-Baselga I; Casares-Crespo L; Mora-Martínez C; Julián Escribano-Saiz J; Hortigüela R; Asenjo-Martínez A; Jordán-Pla A; Ercoli S; Flames N; López-Alonso V; Vilar M; Mira H
    Front Cell Dev Biol; 2022; 10():912319. PubMed ID: 35938168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult hippocampus.
    Jones KM; Sarić N; Russell JP; Andoniadou CL; Scambler PJ; Basson MA
    Stem Cells; 2015 Jan; 33(1):196-210. PubMed ID: 25183173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells.
    Shiozawa S; Nakajima M; Okahara J; Kuortaki Y; Kisa F; Yoshimatsu S; Nakamura M; Koya I; Yoshimura M; Sasagawa Y; Nikaido I; Sasaki E; Okano H
    Stem Cells Dev; 2020 Jun; 29(12):761-773. PubMed ID: 32188344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuropeptide Y is involved in the regulation of quiescence of hematopoietic stem cells.
    Ulum B; Mammadova A; Özyüncü Ö; Uçkan-Çetinkaya D; Yanık T; Aerts-Kaya F
    Neuropeptides; 2020 Apr; 80():102029. PubMed ID: 32127176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Niche Cadherins Control the Quiescence-to-Activation Transition in Muscle Stem Cells.
    Goel AJ; Rieder MK; Arnold HH; Radice GL; Krauss RS
    Cell Rep; 2017 Nov; 21(8):2236-2250. PubMed ID: 29166613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hallmarks of T-cell Exit from Quiescence.
    Chapman NM; Chi H
    Cancer Immunol Res; 2018 May; 6(5):502-508. PubMed ID: 29716982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.