These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38472373)

  • 1. Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: a multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer.
    Usuzaki T; Takahashi K; Inamori R; Morishita Y; Shizukuishi T; Takagi H; Ishikuro M; Obara T; Takase K
    Neuroradiology; 2024 May; 66(5):761-773. PubMed ID: 38472373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting isocitrate dehydrogenase status among adult patients with diffuse glioma using patient characteristics, radiomic features, and magnetic resonance imaging: Multi-modal analysis by variable vision transformer.
    Usuzaki T; Inamori R; Shizukuishi T; Morishita Y; Takagi H; Ishikuro M; Obara T; Takase K
    Magn Reson Imaging; 2024 Sep; 111():266-276. PubMed ID: 38815636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting EGFR Status After Radical Nephrectomy or Partial Nephrectomy for Renal Cell Carcinoma on CT Using a Self-attention-based Model: Variable Vision Transformer (vViT).
    Usuzaki T; Inamori R; Ishikuro M; Obara T; Takaya E; Homma N; Takase K
    J Imaging Inform Med; 2024 Jun; ():. PubMed ID: 38940889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics.
    Chen S; Xu Y; Ye M; Li Y; Sun Y; Liang J; Lu J; Wang Z; Zhu Z; Zhang X; Zhang B
    J Clin Med; 2022 Jun; 11(12):. PubMed ID: 35743511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging based on radiomics for differentiating T1-category nasopharyngeal carcinoma from nasopharyngeal lymphoid hyperplasia: a multicenter study.
    Cheng J; Su W; Wang Y; Zhan Y; Wang Y; Yan S; Yuan Y; Chen L; Wei Z; Zhang S; Gao X; Tang Z
    Jpn J Radiol; 2024 Jul; 42(7):709-719. PubMed ID: 38409300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-based radiomics as response predictor to radiochemotherapy for metastatic cervical lymph node in nasopharyngeal carcinoma.
    Xu H; Liu J; Huang Y; Zhou P; Ren J
    Br J Radiol; 2021 Jun; 94(1122):20201212. PubMed ID: 33882240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric MR radiomics in brain glioma: models comparation to predict biomarker status.
    He J; Ren J; Niu G; Liu A; Wu Q; Xie S; Ma X; Li B; Wang P; Shen J; Wu J; Gao Y
    BMC Med Imaging; 2022 Aug; 22(1):137. PubMed ID: 35931979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive Assessment of O(6)-Methylguanine-DNA Methyltransferase Promoter Methylation Status in World Health Organization Grade II-IV Glioma Using Histogram Analysis of Inflow-Based Vascular-Space-Occupancy Combined with Structural Magnetic Resonance Imaging.
    He W; Li X; Hua J; Liao S; Guo L; Xiao X; Liu X; Zhou J; Wang W; Xu Y; Wu Y
    J Magn Reson Imaging; 2021 Jul; 54(1):227-236. PubMed ID: 33590929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas.
    Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN
    Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma.
    Luo Z; Li J; Liao Y; Liu R; Shen X; Chen W
    Front Oncol; 2022; 12():802234. PubMed ID: 35273911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of radiomics machine learning models based on multimodal MRI with different sequence combinations in predicting cervical lymph node metastasis in oral tongue squamous cell carcinoma patients.
    Liu S; Zhang A; Xiong J; Su X; Zhou Y; Li Y; Zhang Z; Li Z; Liu F
    Head Neck; 2024 Mar; 46(3):513-527. PubMed ID: 38108536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive Evaluation of the Notch Signaling Pathway via Radiomic Signatures Based on Multiparametric MRI in Association With Biological Functions of Patients With Glioma: A Multi-institutional Study.
    Shen N; Lv W; Li S; Liu D; Xie Y; Zhang J; Zhang J; Jiang J; Jiang R; Zhu W
    J Magn Reson Imaging; 2023 Mar; 57(3):884-896. PubMed ID: 35929909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics analysis of T1WI and T2WI magnetic resonance images to differentiate between IgG4-related ophthalmic disease and orbital MALT lymphoma.
    Shao Y; Chen Y; Chen S; Wei R
    BMC Ophthalmol; 2023 Jun; 23(1):288. PubMed ID: 37353736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multicenter Study on Preoperative Assessment of Lymphovascular Space Invasion in Early-Stage Cervical Cancer Based on Multimodal MR Radiomics.
    Wu Y; Wang S; Chen Y; Liao Y; Yin X; Li T; Wang R; Luo X; Xu W; Zhou J; Wang S; Bu J; Zhang X
    J Magn Reson Imaging; 2023 Nov; 58(5):1638-1648. PubMed ID: 36929220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study.
    Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F
    Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicenter clinical radiomics-integrated model based on [
    Zhang L; Pan H; Liu Z; Gao J; Xu X; Wang L; Wang J; Tang Y; Cao X; Kan Y; Wen Z; Chen J; Huang D; Chen S; Li Y
    Eur Radiol; 2023 Feb; 33(2):872-883. PubMed ID: 35984514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma.
    Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S
    Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.