These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38472472)

  • 41. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores.
    Jeplawy JR; Cooper HF; Marks J; Lindroth RL; Andrews MI; Compson ZG; Gehring C; Hultine KR; Grady K; Whitham TG; Allan GJ; Best RJ
    Ecology; 2021 Oct; 102(10):e03461. PubMed ID: 34236702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heat it up to slow it down: Individual energetics reveal how warming reduces stream decomposition.
    Jochum M
    J Anim Ecol; 2022 Oct; 91(10):1944-1947. PubMed ID: 36193670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?
    van Geffen KG; Berg MP; Aerts R
    Oecologia; 2011 Dec; 167(4):1163-75. PubMed ID: 21735203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating ecosystem functioning following river restoration: the role of hydromorphology, bacteria, and macroinvertebrates.
    Lin Q; Zhang Y; Marrs R; Sekar R; Luo X; Wu N
    Sci Total Environ; 2020 Nov; 743():140583. PubMed ID: 32758816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.
    Martínez A; Pérez J; Molinero J; Sagarduy M; Pozo J
    Sci Total Environ; 2015 Jan; 503-504():251-7. PubMed ID: 24962591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores.
    Vos VC; van Ruijven J; Berg MP; Peeters ET; Berendse F
    Oecologia; 2013 Sep; 173(1):269-80. PubMed ID: 23292458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown.
    Swan CM; Palmer MA
    Oecologia; 2006 Mar; 147(3):469-78. PubMed ID: 16425049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities.
    Patoine G; Bruelheide H; Haase J; Nock C; Ohlmann N; Schwarz B; Scherer-Lorenzen M; Eisenhauer N
    Ecol Evol; 2020 Jul; 10(13):6752-6768. PubMed ID: 32724548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactive effects of an insecticide and a fungicide on different organism groups and ecosystem functioning in a stream detrital food web.
    Dawoud M; Bundschuh M; Goedkoop W; McKie BG
    Aquat Toxicol; 2017 May; 186():215-221. PubMed ID: 28324829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates.
    Ferreira V; Gulis V; Graça MA
    Oecologia; 2006 Oct; 149(4):718-29. PubMed ID: 16858587
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size.
    Astor T; Lenoir L; Berg MP
    Oecologia; 2015 Jul; 178(3):833-45. PubMed ID: 25698139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.
    Majdi N; Boiché A; Traunspurger W; Lecerf A
    J Anim Ecol; 2014 Jul; 83(4):953-62. PubMed ID: 24286440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.
    Atwood TB; Hammill E; Richardson JS
    Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detritivores accelerate litter mixture decomposition effect via greater consumption of high quality litter.
    Cai XL; Yang GR; Feng Y; Shen R; Zhao L; Lin DM
    Ying Yong Sheng Tai Xue Bao; 2024 Feb; 35(2):501-506. PubMed ID: 38523108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Density constrains cascading consequences of warming and nitrogen from invertebrate growth to litter decomposition.
    Hines J; Reyes M; Gessner MO
    Ecology; 2016 Jul; 97(7):1635-1642. PubMed ID: 27859157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry.
    Fuller CL; Evans-White MA; Entrekin SA
    Oecologia; 2015 Mar; 177(3):837-848. PubMed ID: 25428786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.
    Four B; Arce E; Danger M; Gaillard J; Thomas M; Banas D
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5452-5468. PubMed ID: 28028701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter.
    Swan CM; Palmer MA
    Oecologia; 2006 Aug; 149(1):107-14. PubMed ID: 16676206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies.
    Cornejo A; Pérez J; Alonso A; López-Rojo N; Monroy S; Boyero L
    J Environ Manage; 2020 Jun; 263():110425. PubMed ID: 32179487
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.
    Ott D; Rall BC; Brose U
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):3025-32. PubMed ID: 23007091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.