These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38472692)

  • 1. SeFilter-DIA: Squeeze-and-Excitation Network for Filtering High-Confidence Peptides of Data-Independent Acquisition Proteomics.
    He Q; Guo H; Li Y; He G; Li X; Shuai J
    Interdiscip Sci; 2024 Mar; ():. PubMed ID: 38472692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSSort-DIA
    Li Y; He Q; Guo H; Zhong CQ; Li X; Li Y; Han J; Shuai J
    J Proteomics; 2022 May; 259():104542. PubMed ID: 35231660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-XIC: a deep neural network for scoring the coelution of peak groups improves peptide identification by data-independent acquisition mass spectrometry.
    Song J; Yu C
    Bioinformatics; 2021 Dec; 38(1):38-43. PubMed ID: 34398181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking Bioinformatics Pipelines in Data-Independent Acquisition Mass Spectrometry for Immunopeptidomics.
    Shahbazy M; Ramarathinam SH; Illing PT; Jappe EC; Faridi P; Croft NP; Purcell AW
    Mol Cell Proteomics; 2023 Apr; 22(4):100515. PubMed ID: 36796644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry.
    Cho KC; Clark DJ; Schnaubelt M; Teo GC; Leprevost FDV; Bocik W; Boja ES; Hiltke T; Nesvizhskii AI; Zhang H
    Anal Chem; 2020 Mar; 92(6):4217-4225. PubMed ID: 32058701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.
    Demichev V; Messner CB; Vernardis SI; Lilley KS; Ralser M
    Nat Methods; 2020 Jan; 17(1):41-44. PubMed ID: 31768060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications.
    Sidoli S; Simithy J; Karch KR; Kulej K; Garcia BA
    Anal Chem; 2015 Nov; 87(22):11448-54. PubMed ID: 26505526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA.
    Koopmans F; Ho JTC; Smit AB; Li KW
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29134766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances of peptide-centric data-independent acquisition analysis algorithms and software tools].
    Zhang Y; Shu K; Chang C
    Sheng Wu Gong Cheng Xue Bao; 2023 Sep; 39(9):3579-3593. PubMed ID: 37805839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-Tri: a deep neural network for scoring the similarity between predicted and measured spectra improves peptide identification of DIA data.
    Song J; Yu C
    Bioinformatics; 2022 Mar; 38(6):1525-1531. PubMed ID: 34999750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep representation features from DreamDIA
    Gao M; Yang W; Li C; Chang Y; Liu Y; He Q; Zhong CQ; Shuai J; Yu R; Han J
    Commun Biol; 2021 Oct; 4(1):1190. PubMed ID: 34650228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry.
    Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T
    Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProPept-MT: A Multi-Task Learning Model for Peptide Feature Prediction.
    He G; He Q; Cheng J; Yu R; Shuai J; Cao Y
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay.
    Heaven MR; Funk AJ; Cobbs AL; Haffey WD; Norris JL; McCullumsmith RE; Greis KD
    J Mass Spectrom; 2016 Jan; 51(1):1-11. PubMed ID: 26757066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome.
    Li KW; Gonzalez-Lozano MA; Koopmans F; Smit AB
    Front Mol Neurosci; 2020; 13():564446. PubMed ID: 33424549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry.
    Nys G; Nix C; Cobraiville G; Servais AC; Fillet M
    Talanta; 2020 Jun; 213():120812. PubMed ID: 32200919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023.
    Lou R; Shui W
    Mol Cell Proteomics; 2024 Feb; 23(2):100712. PubMed ID: 38182042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC-MS/MS.
    Yan B; Shi M; Cai S; Su Y; Chen R; Huang C; Chen DDY
    Anal Chem; 2023 Nov; 95(45):16558-16566. PubMed ID: 37906674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.