These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38473514)

  • 1. Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip.
    Guan J; Lin J; Gao R; Li C; Zhao G; Li M; Wang M; Qiao L; Cheng Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman lasing and soliton mode-locking in lithium niobate microresonators.
    Yu M; Okawachi Y; Cheng R; Wang C; Zhang M; Gaeta AL; Lončar M
    Light Sci Appl; 2020; 9():9. PubMed ID: 31969982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded multi-phonon stimulated Raman scattering near second-harmonic generation in a thin-film lithium niobate microdisk.
    He Y; Yan X; Wu J; Liu X; Chen Y; Chen X
    Opt Lett; 2024 Sep; 49(17):4863-4866. PubMed ID: 39207983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically pumped Milliwatt Whispering-Gallery microcavity laser.
    Li H; Wang Z; Wang L; Tan Y; Chen F
    Light Sci Appl; 2023 Sep; 12(1):223. PubMed ID: 37696802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascaded Stokes and anti-Stokes laser based on an optical resonator with a self-assembled organic monolayer.
    Kovach A; Gallegos A; He J; Choi H; Armani AM
    Opt Lett; 2020 Aug; 45(15):4244-4247. PubMed ID: 32735270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators.
    Farnesi D; Berneschi S; Cosi F; Righini GC; Soria S; Nunzi Conti G
    J Vis Exp; 2016 Apr; (110):e53938. PubMed ID: 27078752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progresses on Hybrid Lithium Niobate External Cavity Semiconductor Lasers.
    Wang M; Fang Z; Zhang H; Lin J; Zhou J; Huang T; Zhu Y; Li C; Yu S; Fu B; Qiao L; Cheng Y
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Raman Lasing and Raman-Kerr Interaction in an Integrated Silicon Carbide Platform.
    Li J; Wang R; Afridi AA; Lu Y; Shi X; Sun W; Ou H; Li Q
    ACS Photonics; 2024 Feb; 11(2):795-800. PubMed ID: 38405389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-optically tunable single-frequency lasing from neodymium-doped lithium niobate microresonators.
    Minet Y; Herr SJ; Breunig I; Zappe H; Buse K
    Opt Express; 2022 Aug; 30(16):28335-28344. PubMed ID: 36299031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region.
    Agarwal D; Ren ML; Berger JS; Yoo J; Pan A; Agarwal R
    Nano Lett; 2019 Feb; 19(2):1204-1209. PubMed ID: 30682253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-beam double stimulated Raman scatterings: Cascading configuration.
    Rao BJ; Cho M
    J Chem Phys; 2018 Mar; 148(11):114201. PubMed ID: 29566530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain.
    Zhang Z; Li S; Gao R; Zhang H; Lin J; Fang Z; Wu R; Wang M; Wang Z; Hang Y; Cheng Y
    Opt Lett; 2023 Aug; 48(16):4344-4347. PubMed ID: 37582028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Assembly of Upconverting Nanoparticles for Low-Threshold Microlasers and Their Imaging in Scattering Media.
    Liu Y; Teitelboim A; Fernandez-Bravo A; Yao K; Altoe MVP; Aloni S; Zhang C; Cohen BE; Schuck PJ; Chan EM
    ACS Nano; 2020 Feb; 14(2):1508-1519. PubMed ID: 32053350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching.
    Zhuang R; He J; Qi Y; Li Y
    Adv Mater; 2023 Jan; 35(3):e2208113. PubMed ID: 36325644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity.
    Li BB; Xiao YF; Yan MY; Clements WR; Gong Q
    Opt Lett; 2013 Jun; 38(11):1802-4. PubMed ID: 23722749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-Tunable Narrow-Linewidth Laser Diode Based on Self-Injection Locking with a High-Q Lithium Niobate Microring Resonator.
    Huang T; Ma Y; Fang Z; Zhou J; Zhou Y; Wang Z; Liu J; Wang Z; Zhang H; Wang M; Xu J; Cheng Y
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow-threshold Raman lasing with CaF2 resonators.
    Grudinin IS; Maleki L
    Opt Lett; 2007 Jan; 32(2):166-8. PubMed ID: 17186052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering.
    Gu F; Xie F; Lin X; Linghu S; Fang W; Zeng H; Tong L; Zhuang S
    Light Sci Appl; 2017 Oct; 6(10):e17061. PubMed ID: 30167203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme.
    Choi DS; Kim CH; Lee T; Nah S; Rhee H; Cho M
    Opt Express; 2019 Aug; 27(16):23558-23575. PubMed ID: 31510631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.