These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38473649)
1. Deciphering Hydrogen Embrittlement Mechanisms in Ti6Al4V Alloy: Role of Solute Hydrogen and Hydride Phase. Nguyen TD; Singh C; Lee DH; Kim YS; Lee T; Lee SY Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473649 [TBL] [Abstract][Full Text] [Related]
2. Effect of Strain Rate on Hydrogen Embrittlement of Ti6Al4V Alloy. Nguyen TD; Ansari N; Lee KH; Lee DH; Han JH; Lee SY Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473572 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging. Oh DK; Kim SG; Shin SH; Hwang B Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457 [TBL] [Abstract][Full Text] [Related]
4. The dual role of coherent twin boundaries in hydrogen embrittlement. Seita M; Hanson JP; Gradečak S; Demkowicz MJ Nat Commun; 2015 Feb; 6():6164. PubMed ID: 25652438 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen Embrittlement of CrCoNi Medium-Entropy Alloy with Millimeter-Scale Grain Size: An In Situ Hydrogen Charging Study. Yan S; He X; Zhu Z Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190461 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging. Qu J; Feng M; An T; Bi Z; Du J; Yang F; Zheng S Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31409025 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2. Gajowiec G; Bartmański M; Majkowska-Marzec B; Zieliński A; Chmiela B; Derezulko M Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32325722 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses. Li Y; Zhang K; Lu D; Zeng B Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279281 [TBL] [Abstract][Full Text] [Related]
9. An SEM compatible plasma cell for in situ studies of hydrogen-material interaction. Massone A; Manhard A; Jacob W; Drexler A; Ecker W; Hohenwarter A; Wurster S; Kiener D Rev Sci Instrum; 2020 Apr; 91(4):043705. PubMed ID: 32357725 [TBL] [Abstract][Full Text] [Related]
10. β-type TiNbSn Alloy Plates With Low Young Modulus Accelerates Osteosynthesis in Rabbit Tibiae. Ito K; Mori Y; Kamimura M; Koguchi M; Kurishima H; Koyama T; Mori N; Masahashi N; Hanada S; Itoi E; Aizawa T Clin Orthop Relat Res; 2022 Sep; 480(9):1817-1832. PubMed ID: 35543573 [TBL] [Abstract][Full Text] [Related]
11. Addressing H-Material Interaction in Fast Diffusion Materials-A Feasibility Study on a Complex Phase Steel. Massone A; Manhard A; Drexler A; Posch C; Ecker W; Maier-Kiener V; Kiener D Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33092297 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology. Sarmiento Klapper H; Klöwer J; Gosheva O Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607193 [TBL] [Abstract][Full Text] [Related]
13. The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires. Li J; Lu C; Wang L; Pei L; Godbole A; Michal G Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498659 [TBL] [Abstract][Full Text] [Related]
14. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Sun B; Lu W; Gault B; Ding R; Makineni SK; Wan D; Wu CH; Chen H; Ponge D; Raabe D Nat Mater; 2021 Dec; 20(12):1629-1634. PubMed ID: 34239084 [TBL] [Abstract][Full Text] [Related]
15. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners. Brahimi SV; Yue S; Sriraman KR Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186 [TBL] [Abstract][Full Text] [Related]
16. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725. Hanson JP; Bagri A; Lind J; Kenesei P; Suter RM; Gradečak S; Demkowicz MJ Nat Commun; 2018 Aug; 9(1):3386. PubMed ID: 30140001 [TBL] [Abstract][Full Text] [Related]
17. Embrittlement Due to Excess Heat Input into Friction Stir Processed 7075 Alloy. Ku MH; Hung FY; Lui TS Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634709 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen trapping and embrittlement in high-strength Al alloys. Zhao H; Chakraborty P; Ponge D; Hickel T; Sun B; Wu CH; Gault B; Raabe D Nature; 2022 Feb; 602(7897):437-441. PubMed ID: 35173345 [TBL] [Abstract][Full Text] [Related]
19. Effects of Wall Thickness Variation on Hydrogen Embrittlement Susceptibility of Additively Manufactured 316L Stainless Steel with Lattice Auxetic Structures. Khedr M; Hamada A; Abd-Elaziem W; Jaskari M; Elsamanty M; Kömi J; Järvenpää A Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984403 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization. Li Q; Ghadiani H; Jalilvand V; Alam T; Farhat Z; Islam MA Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]