These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38473667)

  • 1. Photonic Crystal Structures for Photovoltaic Applications.
    Starczewska A; Kępińska M
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.
    Wang B; Chen KP; Leu PW
    Nanotechnology; 2016 Jun; 27(22):225404. PubMed ID: 27109121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of photons at the surface of three-dimensional photonic crystals.
    Ishizaki K; Noda S
    Nature; 2009 Jul; 460(7253):367-70. PubMed ID: 19606144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals.
    Bermel P; Luo C; Zeng L; Kimerling LC; Joannopoulos JD
    Opt Express; 2007 Dec; 15(25):16986-7000. PubMed ID: 19550990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition.
    Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A
    J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diversity of three-dimensional photonic crystals.
    Cersonsky RK; Antonaglia J; Dice BD; Glotzer SC
    Nat Commun; 2021 May; 12(1):2543. PubMed ID: 33953178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.
    Jiménez-Solano A; Delgado-Sánchez JM; Calvo ME; Miranda-Muñoz JM; Lozano G; Sancho D; Sánchez-Cortezón E; Míguez H
    Prog Photovolt; 2015 Dec; 23(12):1785-1792. PubMed ID: 27656090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping.
    Tang L; Yoshie T
    Opt Express; 2009 Feb; 17(3):1346-51. PubMed ID: 19188963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.
    Collins G; Armstrong E; McNulty D; O'Hanlon S; Geaney H; O'Dwyer C
    Sci Technol Adv Mater; 2016; 17(1):563-582. PubMed ID: 27877904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental probe of a complete 3D photonic band gap.
    Adhikary M; Uppu R; Harteveld CAM; Grishina DA; Vos WL
    Opt Express; 2020 Feb; 28(3):2683-2698. PubMed ID: 32121951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-perfect wide-band absorbers based on one-dimensional photonic crystal structures in 1-20  THz frequencies.
    Mokhtari A; Rezaei MH; Zarifkar A
    Appl Opt; 2023 May; 62(14):3660-3671. PubMed ID: 37706983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic crystals, amorphous materials, and quasicrystals.
    Edagawa K
    Sci Technol Adv Mater; 2014 Jun; 15(3):034805. PubMed ID: 27877676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal light trapping for photocatalysis.
    Zhang X; John S
    Opt Express; 2021 Jul; 29(14):22376-22402. PubMed ID: 34266003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Method for the Elaboration of SiO
    Fookes F; Polo Parada L; Fidalgo M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.